Reinforcement Learning with R
暫譯: 使用 R 的強化學習

Rubén Oliva Ramos

  • 出版商: Packt Publishing
  • 出版日期: 2018-05-09
  • 售價: $1,880
  • 貴賓價: 9.5$1,786
  • 語言: 英文
  • 頁數: 423
  • 裝訂: Paperback
  • ISBN: 1788622944
  • ISBN-13: 9781788622943
  • 相關分類: ReinforcementDeepLearning
  • 海外代購書籍(需單獨結帳)

商品描述

Key Features

  • Learn how to deal with the most-common reinforcement learning problems with the best explained practical approach.
  • Fast paced guide to have a better understanding to know everything about RL concepts, framewords, algorithms and many more.
  • Deep dive and learn how to use popular MDPtoolbox package to its maximum extend.

Book Description

Reinforcement learning(RL) allows machines and software agents to act smart and automatically detect the ideal behavior within a specific surrounding, to maximize its performance and productivity. Reinforcement learning is becoming popular and is used as a tool for constructing autonomous systems that improve themselves with experience.

This book will give you a rundown on a brief introduction to reinforcement learning, using popular MDPtoolbox package. We will break the RL framework into its core building blocks, and provide you with details of each of the elements. In this journey you will see, common RL problems like Multi-Armed Bandit problem, types of RL learning algorithms, Markov Decision Processes (MDPs), monte carlo, dynamic programming such as policy and value iteration. Next you will identify temporal difference learnings such as Q-learning and SARSA. You will then learn, that, the utilization of various algorithms in each of these building blocks is kept secondary, as this research area is still open to better algorithms. We will take a practical and simple approach towards explaining the various building blocks of RL, and then bring them together to create a solution.

By the end of this book you will be able to write his/her own codes to construct self-learning autonomous systems. You will finally see, how reinforcement learning plays a big role in computer oriented games such as chess or tic-tac-toe agent.

What you will learn

  • Explore the framework, elements and framework of RL
  • Find the resources available for building RL frameworks
  • Run RL based algorithms on your own with sample examples provided, followed by customized exercises.
  • How to formulate models for the environment
  • Agent based models, Environment interactions, RL formulation (rewards, states, policy, action), Exploration v/s Exploitation, Decision making, Optimization
  • Most recent libraries and packages in R (on RL elements)
  • How to define and evaluation policies with specific mathematical formulation
  • Devise the value functions in a mathematical formulation, and learn the various methodologies/algorithms for the evaluation of policies
  • How RL is different from other supervised/unsupervised algorithms

商品描述(中文翻譯)

主要特點
- 學習如何以最佳解釋的實用方法處理最常見的強化學習問題。
- 快速指南,幫助您更好地理解強化學習(RL)的概念、框架、算法等。
- 深入學習如何最大限度地使用流行的MDPtoolbox套件。

書籍描述
強化學習(Reinforcement Learning, RL)使機器和軟體代理能夠智能地行動,自動檢測特定環境中的理想行為,以最大化其性能和生產力。強化學習正變得越來越受歡迎,並被用作構建能夠隨著經驗自我改進的自主系統的工具。

本書將簡要介紹強化學習,使用流行的MDPtoolbox套件。我們將把RL框架分解為其核心組成部分,並提供每個元素的詳細資訊。在這個過程中,您將看到常見的RL問題,如多臂賭徒問題、各類RL學習算法、馬可夫決策過程(Markov Decision Processes, MDPs)、蒙地卡羅方法、動態規劃(如策略和價值迭代)。接下來,您將識別時間差學習(Temporal Difference Learning),如Q-learning和SARSA。然後,您將了解到,在這些組成部分中,各種算法的使用是次要的,因為這個研究領域仍然開放於更好的算法。我們將採取實用且簡單的方法來解釋RL的各種組成部分,然後將它們結合起來創建解決方案。

在本書結束時,您將能夠編寫自己的代碼來構建自我學習的自主系統。您將最終看到,強化學習在計算機導向的遊戲中,如國際象棋或井字遊戲代理,扮演著重要角色。

您將學到的內容
- 探索RL的框架、元素和結構
- 找到可用於構建RL框架的資源
- 根據提供的範例自行運行基於RL的算法,並進行自定義練習。
- 如何為環境制定模型
- 基於代理的模型、環境互動、RL公式(獎勵、狀態、策略、行動)、探索與利用、決策制定、優化
- R語言中最新的庫和套件(針對RL元素)
- 如何定義和評估具有特定數學公式的策略
- 在數學公式中設計價值函數,並學習各種方法論/算法以評估策略
- 強化學習與其他監督/非監督算法的不同之處

最後瀏覽商品 (20)