Machine Learning with the Elastic Stack

Rich Collier, Bahaaldine Azarmi

買這商品的人也買了...

相關主題

商品描述

Key Features

  • Get actionable insights from your Elasticsearch data with the help of this handy guide
  • Sift through the large volumes of data and combine the power of machine learning with the search and analytics capabilities of the Elastic stack
  • Get a significant performance and operational advantage by integrating your Elastic stack with external data science tools

Book Description

The open source log-analysis stack now has machine learning components for more sophisticated analytics, albeit through a commercial add-on.

The book will start with understanding how to install and set up the Xpack package, you will see how you can perform time-series analysis on varied kinds of data such as log files, network flows, application metrics and financial data. You will learn how to deploy machine learning within the Elastic Stack for logging, security and metrics. Moving on, you will see how machine learning jobs can be automatically distributed and managed across the Elasticsearch cluster, and made resilient to failure. You will also see how you can integrate different third-party data science tools with the Elastic stack to get the most efficient insights from your data. Finally, you will also understand the performance aspects of incorporating machine learning within the Elastic ecosystem, and see how you can create anomaly detection jobs and view results right from Kibana.

What you will learn

  • Install Elastic stack to use Elastic ML
  • Learn how Elastic ML has been used to detect critical business anomalies.
  • Create jobs to reveal anomalies
  • Explore security analytics with Elastic ML
  • Understand multi-dimension analysis and profile entities
  • Use Elastic ML result to do forensic analysis in Elastic Graph

商品描述(中文翻譯)

《主要特點》

- 透過這本實用指南,從你的Elasticsearch數據中獲得可行的洞察力。
- 篩選大量數據,將機器學習的能力與Elastic stack的搜索和分析功能相結合。
- 通過將Elastic stack與外部數據科學工具集成,獲得顯著的性能和操作優勢。

《書籍描述》

這本書將從安裝和設置Xpack套件開始,您將了解如何對各種數據進行時間序列分析,例如日誌文件、網絡流量、應用程序指標和金融數據。您將學習如何在Elastic Stack中部署機器學習,用於日誌、安全和指標。接下來,您將看到如何自動分佈和管理Elasticsearch集群中的機器學習任務,並使其具有容錯能力。您還將了解如何將不同的第三方數據科學工具與Elastic stack集成,以從數據中獲得最有效的洞察力。最後,您還將了解將機器學習納入Elastic生態系統的性能方面,並了解如何在Kibana中創建異常檢測任務並查看結果。

《你將學到什麼》

- 安裝Elastic stack以使用Elastic ML。
- 了解Elastic ML如何用於檢測關鍵業務異常。
- 創建檢測異常的任務。
- 使用Elastic ML進行安全分析。
- 了解多維分析和配置實體。
- 使用Elastic ML的結果在Elastic Graph中進行法醫分析。