OpenCV 3 Computer Vision with Python Cookbook
暫譯: OpenCV 3 Python 電腦視覺食譜
Alexey Spizhevoy, Aleksandr Rybnikov
- 出版商: Packt Publishing
- 出版日期: 2018-03-23
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 306
- 裝訂: Paperback
- ISBN: 1788474449
- ISBN-13: 9781788474443
-
相關分類:
影像辨識 Image-recognition、Python、程式語言、Computer Vision
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,200$948 -
$520$494 -
$780$616 -
$960Learning OpenCV 3 Computer Vision with Python, 2/e (Paperback)
-
$250OpenCV 3 計算機視覺 : Python 語言實現, 2/e (Learning OpenCV 3 Computer Vision with Python, 2/e)
-
$2,538Deep Learning for Medical Image Analysis
-
$177Modbus 軟件開發實戰指南
-
$580$458 -
$454實戰大數據 : MATLAB 數據挖掘詳解與實踐
-
$450$356 -
$888OpenCV 3.x with Python By Example, 2/e
-
$403MATLAB 與機器學習
-
$658深度捲積網絡 : 原理與實踐
-
$266深度學習:基於 Keras 的 Python 實踐
-
$1,200$948 -
$352TensorFlow + Keras 深度學習人工智能實踐應用
-
$450$356 -
$403深度學習 : 捲積神經網絡從入門到精通
-
$1,230$1,169 -
$880$695 -
$450$351 -
$650$585 -
$2,050$1,948 -
$1,000$790 -
$1,840$1,748
商品描述
Key Features
- Build computer vision applications with OpenCV functionality via Python API
- Get your hands dirty with image processing, image/video analysis, multiple view geometry, and machine learning
- Learn how to use state-of-the-art deep learning models for image classification, object detection, and face recognition
Book Description
OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency and with a strong focus on real-time applications that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems by providing number of recipes that you can improvise in your existing applications.
In this book, you will learn how to process an image by manipulating pixels and analyze an image using histograms. It will guide you on how to segment images into homogeous regions and extract meaningful objects. Then you will learn how to apply image filters to enhance image content and exploit the image geometry in order to relay different views of a pictured scene. Techniques to achieve camera calibration and perform multiple-view analysis will also be explained. You will be presented with various recipes on how to reconstruct a 3D scene from images. Later you will work on conversion of low level pixel information to high level concepts for applications such as object detection and recognition and scene monitoring and you'll discover how to process video from files or cameras, as well as how to detect and track moving objects. Finally, you'll also get acquainted with recent approaches in deep learning, object classification, and neural networks.
By the end of the book, you will be able to apply skills in OpenCV to create and explore computer vision applications in various domains.
What you will learn
- Build OpenCV from sources with Python API support
- Get familiar with low-level image processing methods
- Learn common linear algebra tools needed in computer vision
- Implement camera models and epipolar geometry tools
- Find out how to detect interesting points in images and compare them
- Binarize images and common image masks functionality
- Detect objects and track them in video
- Apply state-of-the-art deep learning models for image classification, object detection, and face recognition
商品描述(中文翻譯)
關鍵特點
- 使用 Python API 建立具有 OpenCV 功能的電腦視覺應用程式
- 實際操作影像處理、影像/視頻分析、多視角幾何學和機器學習
- 學習如何使用最先進的深度學習模型進行影像分類、物體偵測和臉部識別
書籍描述
OpenCV 3 是一個原生的跨平台庫,專為電腦視覺、機器學習和影像處理而設計。OpenCV 的高階 API 方便易用,隱藏了為計算效率而設計的強大內部結構,並強調能夠利用多核心和 GPU 處理的即時應用程式。本書將幫助您解決日益挑戰的電腦視覺問題,提供多種食譜,讓您可以在現有應用程式中即興發揮。
在本書中,您將學習如何通過操作像素來處理影像,並使用直方圖分析影像。它將指導您如何將影像分割成同質區域並提取有意義的物體。接著,您將學習如何應用影像濾鏡來增強影像內容,並利用影像幾何來傳達所拍攝場景的不同視角。還將解釋如何實現相機校準和進行多視角分析。您將獲得各種食譜,學習如何從影像重建 3D 場景。之後,您將處理將低階像素資訊轉換為高階概念的應用,例如物體偵測和識別以及場景監控,並發現如何處理來自檔案或相機的視頻,以及如何偵測和追蹤移動物體。最後,您還將熟悉最近在深度學習、物體分類和神經網絡方面的最新方法。
在書籍結束時,您將能夠應用 OpenCV 的技能,創建並探索各個領域的電腦視覺應用程式。
您將學到的內容
- 從源碼構建支持 Python API 的 OpenCV
- 熟悉低階影像處理方法
- 學習電腦視覺所需的常見線性代數工具
- 實現相機模型和極線幾何工具
- 瞭解如何在影像中偵測有趣的點並進行比較
- 將影像二值化及常見影像遮罩功能
- 偵測物體並在視頻中追蹤它們
- 應用最先進的深度學習模型進行影像分類、物體偵測和臉部識別