Hands-on DevOps: Explore the concept of continuous delivery and integrate it with data science concepts
暫譯: 實作 DevOps:探索持續交付的概念並將其與資料科學概念整合
Sricharan Vadapalli
- 出版商: Packt Publishing
- 出版日期: 2017-12-22
- 定價: $1,480
- 售價: 6.0 折 $888
- 語言: 英文
- 頁數: 424
- 裝訂: Paperback
- ISBN: 1788471180
- ISBN-13: 9781788471183
-
相關分類:
CI/CD、DevOps、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$580$458 -
$400$316 -
$580$458 -
$780$616 -
$780$616
商品描述
Transform yourself into a specialist in DevOps adoption for Big Data on cloud
Key Features
- Learn the concepts of Bigdata and Devops and Implement them
- Get Acquainted with DevOps Frameworks Methodologies and Tools
- A practical approach to build and work efficiently with your big data cluster
- Get introduced to multiple flavors of tools and platforms from vendors on Hadoop, Cloud, Containers and IoT Offerings
- In-Depth Technology understanding on Data Sciences, Microservices, Bigdata
Book Description
DevOps strategies have really become an important factor for big data environments.
This book initially provides an introduction to big data, DevOps, and Cloud computing along with the need for DevOps strategies in big data environments. We move on to explore the adoption of DevOps frameworks and business scenarios. We then build a big data cluster, deploy it on the cloud, and explore DevOps activities such as CI/CD and containerization. Next, we cover big data concepts such as ETL for data sources, Hadoop clusters, and their applications. Towards the end of the book, we explore ERP applications useful for migrating to DevOps frameworks and examine a few case studies for migrating big data and prediction models.
By the end of this book, you will have mastered implementing DevOps tools and strategies for your big data clusters.
What you will learn
- Learn about the DevOps culture, its frameworks, maturity, and design patterns
- Get acquainted with multiple niche technologies microservices, containers, kubernetes, IoT, and cloud
- Build big data clusters, enterprise applications and data science models
- Apply DevOps concepts for continuous integration, delivery, deployment and monitoring
- Get introduced to Open source tools, service offerings from multiple vendors
- Start digital journey to apply DevOps concepts to migrate big data, cloud, microservices, IoT, security, ERP systems
Who This Book Is For
If you are a Big Data Architects, solutions provider, or any stakeholder working in big data environment and wants to implement the strategy of DevOps, then this book is for you.
Table of Contents
- Introduction to DevOps
- Introduction to Big Data and Data Sciences
- DevOps Framework
- Big Data Hadoop Ecosystems
- Cloud Computing
- Building Big Data Applications
- DevOps - Continuous Integration and Delivery
- DevOps Continuous Deployment
- Containers, IoT, and Microservices
- DevOps for Digital Transformation
- Appendix A: DevOps Adoption by ERP Systems
- Appendix B: DevOps Periodic Table
- Appendix C: Business Intelligence Trends
- Appendix D: Testing Types and Levels
- Appendix E: Java Platform Standard Edition 8
商品描述(中文翻譯)
**將自己轉變為雲端大數據 DevOps 採用的專家**
#### 主要特點
- 學習大數據和 DevOps 的概念並實施它們
- 熟悉 DevOps 框架、方法論和工具
- 實用的方法來高效構建和運行您的大數據集群
- 了解多種供應商在 Hadoop、雲端、容器和物聯網產品上的工具和平台
- 深入理解數據科學、微服務和大數據的技術
#### 書籍描述
DevOps 策略已成為大數據環境中的一個重要因素。
本書最初介紹了大數據、DevOps 和雲端計算,以及在大數據環境中對 DevOps 策略的需求。我們接著探索 DevOps 框架的採用和商業場景。然後,我們構建一個大數據集群,將其部署到雲端,並探索 DevOps 活動,如 CI/CD 和容器化。接下來,我們涵蓋大數據概念,如數據來源的 ETL、Hadoop 集群及其應用。書籍的最後,我們探索對於遷移到 DevOps 框架有用的 ERP 應用,並檢視幾個遷移大數據和預測模型的案例研究。
在本書結束時,您將掌握為您的大數據集群實施 DevOps 工具和策略的能力。
#### 您將學到什麼
- 了解 DevOps 文化、其框架、成熟度和設計模式
- 熟悉多種利基技術,如微服務、容器、Kubernetes、物聯網和雲端
- 構建大數據集群、企業應用和數據科學模型
- 應用 DevOps 概念進行持續集成、交付、部署和監控
- 了解開源工具和多個供應商的服務產品
- 開始數位旅程,應用 DevOps 概念以遷移大數據、雲端、微服務、物聯網、安全性和 ERP 系統
#### 本書適合誰
如果您是大數據架構師、解決方案提供者或任何在大數據環境中工作的利益相關者,並希望實施 DevOps 策略,那麼本書適合您。
#### 目錄
1. DevOps 介紹
2. 大數據和數據科學介紹
3. DevOps 框架
4. 大數據 Hadoop 生態系統
5. 雲端計算
6. 構建大數據應用
7. DevOps - 持續集成和交付
8. DevOps 持續部署
9. 容器、物聯網和微服務
10. 用於數位轉型的 DevOps
11. 附錄 A:ERP 系統的 DevOps 採用
12. 附錄 B:DevOps 週期表
13. 附錄 C:商業智慧趨勢
14. 附錄 D:測試類型和層級
15. 附錄 E:Java 平台標準版 8