Neural Networks with R
暫譯: 使用 R 的神經網絡

Giuseppe Ciaburro, Balaji Venkateswaran

  • 出版商: Packt Publishing
  • 出版日期: 2017-09-27
  • 售價: $1,840
  • 貴賓價: 9.5$1,748
  • 語言: 英文
  • 頁數: 270
  • 裝訂: Paperback
  • ISBN: 1788397878
  • ISBN-13: 9781788397872
  • 相關翻譯: 神經網絡:R語言實現 (簡中版)
  • 海外代購書籍(需單獨結帳)

商品描述

Key Features

  • Develop a strong background in neural networks with R, to implement them in your applications
  • Learn how to build and train neural network models to solve complex problems Implement solutions from scratch
  • Covering real-world case studies to illustrate the power of neural network models

Book Description

Neural networks in one of the most fascinating machine learning model to solve complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book will give you a rundown explaining the niche aspects of neural networking which will provide you with a foundation to get start with the advanced topics. We start off with neural network design using neuralnet package, then you'll build a solid foundational knowledge of how a neural network learns from data, and the principles behind it. This book cover various types of neural networks including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but also see a generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases.By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples mentioned in the book.

What you will learn

  • Setup R packages for neural networks and deep learning
  • Understand the core concepts of artificial neural networks
  • Understand neurons, perceptron, bias, weights and activation functions
  • Implement supervised and unsupervised machine learning in R for neural networks
  • Predict and classify data automatically using neural networks
  • Evaluate and fine tune the models built.

商品描述(中文翻譯)

**主要特點**

- 建立強大的神經網絡背景,使用 R 將其應用於您的應用程式
- 學習如何構建和訓練神經網絡模型以解決複雜問題,從零開始實現解決方案
- 涵蓋真實案例研究,以說明神經網絡模型的強大功能

**書籍描述**

神經網絡是解決複雜計算問題的最迷人的機器學習模型之一。神經網絡被用來解決人工智慧和機器學習不同領域中的廣泛問題。本書將為您提供有關神經網絡的專業知識,為您打下基礎,以便開始進入進階主題。我們將從使用 neuralnet 套件設計神經網絡開始,然後您將建立對神經網絡如何從數據中學習及其背後原理的堅實基礎知識。本書涵蓋各種類型的神經網絡,包括遞歸神經網絡和卷積神經網絡。您不僅會學習如何訓練神經網絡,還會看到這些網絡的概括。稍後我們將深入探討結合不同的神經網絡模型,並處理真實世界的使用案例。在本書結束時,您將學會如何在您的應用程式中實現神經網絡模型,並參考書中提到的實用範例。

**您將學到的內容**

- 設置 R 套件以進行神經網絡和深度學習
- 理解人工神經網絡的核心概念
- 理解神經元、感知器、偏差、權重和激活函數
- 在 R 中實現有監督和無監督的機器學習以用於神經網絡
- 使用神經網絡自動預測和分類數據
- 評估和微調所構建的模型。