Learning Generative Adversarial Networks
暫譯: 學習生成對抗網絡
Kuntal Ganguly
- 出版商: Packt Publishing
- 出版日期: 2017-10-31
- 售價: $1,520
- 貴賓價: 9.5 折 $1,444
- 語言: 英文
- 頁數: 180
- 裝訂: Paperback
- ISBN: 1788396413
- ISBN-13: 9781788396417
-
相關翻譯:
GAN : 實戰生成對抗網絡 (簡中版)
買這商品的人也買了...
-
$880$695 -
$500$450 -
$780$663 -
$960$758 -
$780$616 -
$454Spring 實戰, 4/e (Spring in Action, 4/e)
-
$1,617Deep Learning (Hardcover)
-
$2,538Deep Learning for Medical Image Analysis
-
$301神經網絡算法與實現:基於Java語言
-
$1,860$1,767 -
$250Java 機器學習 (Machine Learning in Java)
-
$580$458 -
$620$484 -
$390$332 -
$580$493 -
$480$408 -
$580$493 -
$768$730 -
$580$522 -
$480$379 -
$520$411 -
$800$632 -
$420$357
相關主題
商品描述
Key Features
- Understand the buzz surrounding Generative Adversarial Networks and how they work, in the simplest manner possible
- Develop generative models for a variety of real-world use-cases and deploy them to production.
- Contains intuitive examples and real-world cases to put theoretical concepts explained in this book to practical use
Book Description
Generative models are gaining a lot of popularity among the data scientists, mainly because they facilitate the building of AI systems that consume raw data from a source and automatically builds an understanding from it. Unlike supervised learning methods, generative models do not require labelling of the data which makes it an interesting system to use. This book will teach you all you need to know about generative models and the basics of implementing a generative adversarial network from scratch.
The book begins with the basics of generative models, as you get to know the theory behind generative adversarial networks and it's building blocks. You will understand how conditional GAN can automatically generate compatible colors for a sketch and is capable of painting hand-draw sketch with proper colors. Discover the latest approach of stacking Generative Adversarial Networks into multiple stages to decompose the problem of text to image synthesis, and develop intelligent and creative applications from a wide variety of datasets, mainly focusing on images. You will also see how to use DiscoGAN successfully transfers style from one domain to another using Tensorflow and Keras. Through this book you will be trained to build GAN models and use them in a production environment. You will be well versed with the basics of generative modelling, and learn how to use it effectively and accurately.
By the end of this book, you will be well versed with the basics of generative modelling, and learn how to use it effectively and accurately.
What you will learn
- Generate images and how to build semi-supervised model using Generative Adversarial Network(GAN)
- Use stacking with Deep Learning architecture to run and generate images from text.
- Tune GAN models by addressing the high dependency between input examples of a mini batch using Virtual Batch Normalization.
- Create data and "feed" the models by using the appropriate GAN models with python libraries Tensorflow and Keras.
- Explore the steps to deploy deep models in production
商品描述(中文翻譯)
主要特點
- 以最簡單的方式了解生成對抗網路(Generative Adversarial Networks)及其運作原理
- 為各種現實世界的應用案例開發生成模型並將其部署到生產環境中
- 包含直觀的範例和現實案例,將本書中解釋的理論概念付諸實踐
書籍描述
生成模型在數據科學家中越來越受歡迎,主要是因為它們促進了構建能夠從來源消耗原始數據並自動建立理解的人工智慧系統。與監督學習方法不同,生成模型不需要對數據進行標記,這使得它成為一個有趣的系統。本書將教你有關生成模型的所有知識,以及從零開始實現生成對抗網路的基本知識。
本書從生成模型的基本概念開始,讓你了解生成對抗網路的理論及其構建基礎。你將理解條件GAN如何自動生成與草圖相容的顏色,並能夠為手繪草圖上色。探索將生成對抗網路堆疊成多個階段的最新方法,以分解文本到圖像合成的問題,並從各種數據集(主要集中在圖像上)開發智能和創意應用。你還將看到如何使用DiscoGAN成功地將風格從一個領域轉移到另一個領域,使用Tensorflow和Keras。通過本書,你將接受訓練以構建GAN模型並在生產環境中使用它們。你將熟悉生成建模的基本知識,並學會如何有效且準確地使用它。
在本書結束時,你將熟悉生成建模的基本知識,並學會如何有效且準確地使用它。
你將學到的內容
- 生成圖像以及如何使用生成對抗網路(GAN)構建半監督模型
- 使用深度學習架構進行堆疊,以從文本運行和生成圖像
- 通過使用虛擬批量正規化來調整GAN模型,解決小批量輸入示例之間的高度依賴性
- 創建數據並使用適當的GAN模型與Python庫Tensorflow和Keras“餵養”模型
- 探索在生產環境中部署深度模型的步驟