Neural Network Programming with TensorFlow: Unleash the power of TensorFlow to train efficient neural networks
暫譯: 使用 TensorFlow 的神經網絡編程:釋放 TensorFlow 的力量以訓練高效的神經網絡
Manpreet Singh Ghotra, Rajdeep Dua
- 出版商: Packt Publishing
- 出版日期: 2017-11-10
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 274
- 裝訂: Paperback
- ISBN: 1788390393
- ISBN-13: 9781788390392
-
相關分類:
DeepLearning、TensorFlow
-
相關翻譯:
TensorFlow 神經網絡編程 (簡中版)
買這商品的人也買了...
-
$648$616 -
$450$356 -
$40321個項目玩轉深度學習 -- 基於 TensorFlow 的實踐詳解
-
$332GAN : 實戰生成對抗網絡
-
$580$493 -
$301邊緣計算
相關主題
商品描述
Neural Networks and their implementation decoded with TensorFlow
About This Book
- Develop a strong background in neural network programming from scratch, using the popular Tensorflow library.
- Use Tensorflow to implement different kinds of neural networks – from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more.
- A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation.
Who This Book Is For
This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you.
What You Will Learn
- Learn Linear Algebra and mathematics behind neural network.
- Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks.
- Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points
- Learn through real world examples like Sentiment Analysis.
- Train different types of generative models and explore autoencoders.
- Explore TensorFlow as an example of deep learning implementation.
In Detail
If you're aware of the buzz surrounding the terms such as "machine learning,"
商品描述(中文翻譯)
神經網絡及其在 TensorFlow 中的實現解碼
關於本書
- 從零開始建立堅實的神經網絡編程基礎,使用流行的 TensorFlow 函式庫。
- 使用 TensorFlow 實現各種神經網絡,從簡單的前饋神經網絡到多層感知器、卷積神經網絡 (CNN)、遞迴神經網絡 (RNN) 等等。
- 一本高度實用的指南,包括真實世界的數據集和使用案例,以簡化您對神經網絡及其實現的理解。
本書適合誰
本書適合具有統計背景的開發人員,想要從事神經網絡相關工作。雖然我們將使用 TensorFlow 作為神經網絡的底層函式庫,但本書也可以作為一個通用資源,幫助填補數學與深度學習實現之間的鴻溝。如果您對 TensorFlow 和 Python 有一定的了解,並希望學習比純 API 語法更底層的內容,本書適合您。
您將學到什麼
- 學習線性代數及神經網絡背後的數學。
- 深入探討神經網絡,從基本概念到進階概念,如 CNN、RNN、深度信念網絡、深度前饋網絡。
- 探索優化技術以解決局部最小值、全局最小值、鞍點等問題。
- 通過真實世界的例子學習,如情感分析。
- 訓練不同類型的生成模型並探索自編碼器。
- 探索 TensorFlow 作為深度學習實現的範例。
詳細內容
如果您對「機器學習」等術語的熱潮有所了解,