Statistics for Machine Learning
暫譯: 機器學習的統計學
Pratap Dangeti
- 出版商: Packt Publishing
- 出版日期: 2017-07-21
- 售價: $2,210
- 貴賓價: 9.5 折 $2,100
- 語言: 英文
- 頁數: 442
- 裝訂: Paperback
- ISBN: 1788295757
- ISBN-13: 9781788295758
-
相關分類:
Machine Learning、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,575$1,496 -
$199FPGA 深度解析
-
$4,440$4,218 -
$3,420$3,249 -
$580$452 -
$350$315
相關主題
商品描述
Key Features
- Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics.
- Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering.
- Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python.
Book Description
Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will also design programs for performing tasks such as model, parameter fitting, regression, classification, density collection, and more.
By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem.
What you will learn
- Understand the Statistical and Machine Learning fundamentals necessary to build models
- Understand the major differences and parallels between the statistical way and the Machine Learning way to solve problems
- Learn how to prepare data and feed models by using the appropriate Machine Learning algorithms from the more-than-adequate R and Python packages
- Analyze the results and tune the model appropriately to your own predictive goals
商品描述(中文翻譯)
**主要特點**
- 了解強大預測模型背後的統計學,包括 p-value、ANOVA 和 F-統計量。
- 透過 K-means 聚類以程式化方式實現監督式和非監督式學習的統計計算。
- 在這本充滿範例的 R 和 Python 指導書中掌握機器學習的統計方面。
**書籍描述**
機器學習中的複雜統計讓許多開發者感到困擾。了解統計學有助於您建立針對特定問題陳述優化的強大機器學習模型。本書將教您執行機器學習所需的複雜統計計算所需的一切。您將獲得有關監督式學習、非監督式學習、強化學習等背後的統計資訊。理解討論機器學習統計方面的實際案例並熟悉它。您還將設計程式以執行模型、參數擬合、回歸、分類、密度收集等任務。
在書籍結束時,您將掌握機器學習所需的統計知識,並能將您的新技能應用於任何行業問題。
**您將學到的內容**
- 理解建立模型所需的統計學和機器學習基礎知識
- 理解統計方法與機器學習方法解決問題之間的主要差異和相似之處
- 學習如何準備數據並使用適當的機器學習算法從充足的 R 和 Python 套件中為模型提供數據
- 分析結果並根據自己的預測目標適當調整模型