Mastering Geospatial Analysis with Python: Explore GIS processing and learn to work with GeoDjango, CARTOframes and MapboxGL-Jupyter
Silas Toms, Eric van Rees, Paul Crickard
- 出版商: Packt Publishing
- 出版日期: 2018-04-27
- 售價: $2,180
- 貴賓價: 9.5 折 $2,071
- 語言: 英文
- 頁數: 440
- 裝訂: Paperback
- ISBN: 1788293339
- ISBN-13: 9781788293334
-
相關分類:
Django、Python、程式語言、地理資訊系統 Gis
海外代購書籍(需單獨結帳)
相關主題
商品描述
Explore GIS processing and learn to work with various tools and libraries in Python.
Key Features
- Analyze and process geospatial data using Python libraries such as; Anaconda, GeoPandas
- Leverage new ArcGIS API to process geospatial data for the cloud.
- Explore various Python geospatial web and machine learning frameworks.
Book Description
Python comes with a host of open source libraries and tools that help you work on professional geoprocessing tasks without investing in expensive tools. This book will introduce Python developers, both new and experienced, to a variety of new code libraries that have been developed to perform geospatial analysis, statistical analysis, and data management. This book will use examples and code snippets that will help explain how Python 3 differs from Python 2, and how these new code libraries can be used to solve age-old problems in geospatial analysis.
You will begin by understanding what geoprocessing is and explore the tools and libraries that Python 3 offers. You will then learn to use Python code libraries to read and write geospatial data. You will then learn to perform geospatial queries within databases and learn PyQGIS to automate analysis within the QGIS mapping suite. Moving forward, you will explore the newly released ArcGIS API for Python and ArcGIS Online to perform geospatial analysis and create ArcGIS Online web maps. Further, you will deep dive into Python Geospatial web frameworks and learn to create a geospatial REST API.
What you will learn
- Manage code libraries and abstract geospatial analysis techniques using Python 3.
- Explore popular code libraries that perform specific tasks for geospatial analysis.
- Utilize code libraries for data conversion, data management, web maps, and REST API creation.
- Learn techniques related to processing geospatial data in the cloud.
- Leverage features of Python 3 with geospatial databases such as PostGIS, SQL Server, and SpatiaLite.
Who This Book Is For
The audience for this book includes students, developers, and geospatial professionals who need a reference book that covers GIS data management, analysis, and automation techniques with code libraries built in Python 3.
Table of Contents
- Package installation and management
- Introduction to geospatial code libraries
- Introduction to geospatial databases
- Data types, storage and conversion
- Vector data analysis
- Raster data processing
- Geoprocessing with geodatabases
- Automating QGIS analysis
- ArcGIS API for Python and ArcGIS Online
- Geoprocessing with a GPU Database
- Flask and GeoAlchemy
- GeoDjango
- Creating a geospatial REST API
- Cloud Geodatabase Analysis and Visualization
- Automating Cloud Cartography
- Python geoprocessing with Hadoop
商品描述(中文翻譯)
探索地理信息系統(GIS)處理並學習在Python中使用各種工具和庫。
主要特點:
- 使用Python庫(如Anaconda、GeoPandas)分析和處理地理空間數據。
- 利用新的ArcGIS API在雲端處理地理空間數據。
- 探索各種Python地理空間網絡和機器學習框架。
書籍描述:
Python提供了一系列開源庫和工具,可以幫助您在不投資昂貴工具的情況下進行專業地理處理任務。本書將向新手和有經驗的Python開發人員介紹各種新的代碼庫,這些庫用於執行地理空間分析、統計分析和數據管理。本書將使用示例和代碼片段來解釋Python 3與Python 2的區別,以及這些新的代碼庫如何用於解決地理空間分析中的古老問題。
您將首先了解地理處理的概念,並探索Python 3提供的工具和庫。然後,您將學習使用Python代碼庫讀取和寫入地理空間數據。接著,您將學習在數據庫中執行地理空間查詢,並學習使用PyQGIS自動化QGIS地圖套件中的分析。隨著學習的深入,您將探索新發布的ArcGIS API for Python和ArcGIS Online,以進行地理空間分析並創建ArcGIS Online網絡地圖。此外,您還將深入研究Python地理空間網絡框架,並學習創建地理空間REST API。
您將學到:
- 使用Python 3管理代碼庫並抽象地理空間分析技術。
- 探索執行特定地理空間分析任務的流行代碼庫。
- 利用代碼庫進行數據轉換、數據管理、網絡地圖和REST API創建。
- 學習與雲端處理地理空間數據相關的技術。
- 利用Python 3的功能與PostGIS、SQL Server和SpatiaLite等地理空間數據庫。
本書適合的讀者:
本書的受眾包括學生、開發人員和地理空間專業人員,他們需要一本涵蓋Python 3內建代碼庫的GIS數據管理、分析和自動化技術的參考書。
目錄:
1. 套件安裝和管理
2. 地理空間代碼庫介紹
3. 地理空間數據庫介紹
4. 數據類型、存儲和轉換
5. 向量數據分析
6. 光柵數據處理
7. 使用地理數據庫進行地理處理
8. 自動化QGIS分析
9. ArcGIS API for Python和ArcGIS Online
10. 使用GPU數據庫進行地理處理
11. Flask和GeoAlchemy
12. GeoDjango
13. 創建地理空間REST API
14. 雲端地理數據庫分析和可視化
15. 自動化雲端制圖
16. 使用Hadoop進行Python地理處理