IBM SPSS Modeler Essentials: Effective techniques for building powerful data mining and predictive analytics solutions
暫譯: IBM SPSS Modeler 基礎:構建強大數據挖掘與預測分析解決方案的有效技術
Jesus Salcedo, Keith McCormick
- 出版商: Packt Publishing
- 出版日期: 2017-12-21
- 售價: $1,670
- 貴賓價: 9.5 折 $1,587
- 語言: 英文
- 頁數: 238
- 裝訂: Paperback
- ISBN: 1788291115
- ISBN-13: 9781788291118
-
相關分類:
SPSS、Data-mining、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler
Key Features
- Get up–and-running with IBM SPSS Modeler without going into too much depth.
- Identify interesting relationships within your data and build effective data mining and predictive analytics solutions
- A quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business
Book Description
IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey.
This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler’s easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices.
This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model’s performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models.
What you will learn
- Understand the basics of data mining and familiarize yourself with Modeler’s visual programming interface
- Import data into Modeler and learn how to properly declare metadata
- Obtain summary statistics and audit the quality of your data
- Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields
- Assess simple relationships using various statistical and graphing techniques
- Get an overview of the different types of models available in Modeler
- Build a decision tree model and assess its results
- Score new data and export predictions
Who This Book Is For
This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book.
Table of Contents
- Introduction to Data Mining
- The Basics of Using Modeler
- Importing Data into Modeler
- Data Quality and Exploration
- Cleaning and Selecting Data
- Combining Data Files
- Combining and Restructuring Data
- Looking for Relationships between Fields
- Introduction to Modeling Options in IBM SPSS Modeler
- Decision Tree Models
- Model Assessment and Scoring
商品描述(中文翻譯)
掌握 IBM SPSS Modeler 的資料探勘與預測分析基礎
主要特點
- 快速上手 IBM SPSS Modeler,而不需深入複雜的細節。
- 識別資料中的有趣關係,並建立有效的資料探勘與預測分析解決方案。
- 一本簡單易懂的指南,讓你對 SPSS Modeler 有基本的了解,由業界最佳專家撰寫。
書籍描述
IBM SPSS Modeler 使使用者能快速且有效地使用預測分析,並從資料中獲取洞見。Modeler 擁有近 25 年的歷史,是最成熟且全面的資料探勘工作平台。由於它在企業環境中廣受歡迎,並且在大學環境中廣泛可用,與所有最新技術高度相容,因此它是開始你的資料科學與機器學習之旅的完美選擇。
本書採取詳細的逐步方法,使用事實標準流程 CRISP-DM 介紹資料探勘,並利用 Modeler 易於學習的「視覺程式設計」風格。你將學會如何將資料讀入 Modeler、評估資料品質、準備資料以進行建模、發現資料中的有趣模式和關係,以及匯出預測結果。全書以單一案例研究為主,這本故意簡短且專注的書籍專注於基本要素。作者根據數十年教導數千名新使用者的經驗,選擇了你應該首先學習的 Modeler 方面,讓你能夠以經過驗證的最佳實踐良好開端。
本書提供各種流行的資料建模技術概述,並詳細介紹如何使用 CHAID 決策樹模型的案例研究。評估模型的性能與建立模型同樣重要;本書也將告訴你如何做到這一點。最後,你將看到如何對新資料進行評分並匯出預測結果。到本書結束時,你將對資料探勘的基本概念有堅實的理解,並能有效使用 Modeler 建立預測模型。
你將學到什麼
- 理解資料探勘的基本概念,並熟悉 Modeler 的視覺程式設計介面。
- 將資料匯入 Modeler,並學習如何正確聲明元資料。
- 獲取摘要統計數據並審核資料品質。
- 通過選擇和排序案例、識別和移除重複項、合併資料檔案以及修改和創建欄位來準備資料以進行建模。
- 使用各種統計和圖形技術評估簡單關係。
- 概覽 Modeler 中可用的不同類型模型。
- 建立決策樹模型並評估其結果。
- 對新資料進行評分並匯出預測。
本書適合誰
本書非常適合那些對 SPSS Modeler 新手,並希望儘快開始使用它,而不需深入複雜細節的人。理解基本的資料探勘概念將有助於你充分利用本書。
目錄
- 資料探勘簡介
- 使用 Modeler 的基礎
- 將資料匯入 Modeler
- 資料品質與探索
- 清理與選擇資料
- 合併資料檔案
- 合併與重組資料
- 尋找欄位之間的關係
- IBM SPSS Modeler 中建模選項簡介
- 決策樹模型
- 模型評估與評分