Python: Deeper Insights into Machine Learning

Sebastian Raschka, David Julian, John Hearty

  • 出版商: Packt Publishing
  • 出版日期: 2017-06-29
  • 售價: $3,480
  • 貴賓價: 9.5$3,306
  • 語言: 英文
  • 頁數: 916
  • 裝訂: Paperback
  • ISBN: 1787128571
  • ISBN-13: 9781787128576
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Leverage benefits of machine learning techniques using Python About This Book * Improve and optimise machine learning systems using effective strategies. * Develop a strategy to deal with a large amount of data. * Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn * Learn to write clean and elegant Python code that will optimize the strength of your algorithms * Uncover hidden patterns and structures in data with clustering * Improve accuracy and consistency of results using powerful feature engineering techniques * Gain practical and theoretical understanding of cutting-edge deep learning algorithms * Solve unique tasks by building models * Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.

商品描述(中文翻譯)

利用 Python 發揮機器學習技術的優勢

關於本書
* 使用有效的策略改善和優化機器學習系統。
* 制定應對大量數據的策略。
* 使用 Python 代碼實現各種機器學習算法和技術。

本書適合對象
本書適合已經進入數據科學領域的數據科學家和研究人員,想要看到機器學習的實際應用並探索其在現實世界中的應用。必須具備 Python 編程和數學的先前知識,並對機器學習概念有基本了解。

您將學到的內容
* 學會編寫乾淨且優雅的 Python 代碼,以優化算法的效能
* 通過聚類發現數據中的隱藏模式和結構
* 使用強大的特徵工程技術提高結果的準確性和一致性
* 獲得對尖端深度學習算法的實踐和理論理解
* 通過建立模型解決獨特任務
* 理解機器學習設計過程

詳細內容
機器學習和預測分析正成為在當前挑戰性市場中解鎖增長的關鍵策略之一。這是現代計算中增長最快的趨勢之一,人人都想進入機器學習領域。為了在這個領域獲得足夠的認可,必須能夠理解和設計一個滿足項目需求的機器學習系統。這本書的目的是準備一條學習路徑,幫助您應對現代機器學習的現實複雜性,並使用創新和尖端技術。此外,它將為您提供機器學習設計過程的堅實基礎,使您能夠構建定制的機器學習模型以解決獨特問題。

課程開始時將幫助您掌握 Python 的基本知識。它專注於回答涵蓋多種強大 Python 庫(包括 scikit-learn、Theano 和 Keras)的正確問題。在熟悉 Python 核心概念後,您將進一步深入數據科學領域。您將獲得機器學習設計的堅實基礎,並學會定制模型以解決問題。在後期階段,您將掌握更高級的技術,並在特徵選擇和特徵工程領域獲得一系列強大的技能。

風格與方法
本課程包含所有資源,幫助您使用 Python 進入數據科學領域。目標是逐步介紹 Python 的各個元素,涵蓋強大的機器學習庫。本課程將以逐步的方式解釋重要的機器學習模型。每個主題都會用現實世界的應用進行詳細說明。通過這本全面的指南,您將能夠探索機器學習技術。