Python for Finance Second Edition
暫譯: 金融中的 Python 第二版

Yuxing Yan

  • 出版商: Packt Publishing
  • 出版日期: 2017-06-30
  • 售價: $2,210
  • 貴賓價: 9.5$2,100
  • 語言: 英文
  • 頁數: 586
  • 裝訂: Paperback
  • ISBN: 1787125696
  • ISBN-13: 9781787125698
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Learn and implement various Quantitative Finance concepts using the popular Python libraries

About This Book

  • Understand the fundamentals of Python data structures and work with time-series data
  • Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and matplotlib
  • A step-by-step tutorial packed with many Python programs that will help you learn how to apply Python to finance

Who This Book Is For

This book assumes that the readers have some basic knowledge related to Python. However, he/she has no knowledge of quantitative finance. In addition, he/she has no knowledge about financial data.

What You Will Learn

  • Become acquainted with Python in the first two chapters
  • Run CAPM, Fama-French 3-factor, and Fama-French-Carhart 4-factor models
  • Learn how to price a call, put, and several exotic options
  • Understand Monte Carlo simulation, how to write a Python program to replicate the Black-Scholes-Merton options model, and how to price a few exotic options
  • Understand the concept of volatility and how to test the hypothesis that volatility changes over the years
  • Understand the ARCH and GARCH processes and how to write related Python programs

In Detail

This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it.

This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance.

The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures.

This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM's market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option.

Style and approach

This book takes a step-by-step approach in explaining the libraries and modules in Python, and how they can be used to implement various aspects of quantitative finance. Each concept is explained in depth and supplemented with code examples for better understanding.

商品描述(中文翻譯)

學習並實作各種量化金融概念,使用流行的 Python 函式庫

本書介紹


  • 了解 Python 資料結構的基本原理,並處理時間序列資料

  • 使用流行的 Python 函式庫,如 NumPy、SciPy 和 matplotlib,實作量化金融中的關鍵概念

  • 提供逐步教學,包含許多 Python 程式,幫助您學習如何將 Python 應用於金融

本書適合誰閱讀

本書假設讀者對 Python 有一些基本知識,但對量化金融沒有了解。此外,讀者對金融數據也沒有相關知識。

您將學到什麼


  • 在前兩章中熟悉 Python

  • 運行 CAPM、Fama-French 三因子模型和 Fama-French-Carhart 四因子模型

  • 學習如何定價看漲期權、看跌期權及幾種特殊期權

  • 了解蒙地卡羅模擬,如何撰寫 Python 程式以複製 Black-Scholes-Merton 期權模型,以及如何定價幾種特殊期權

  • 理解波動率的概念,以及如何檢驗波動率隨時間變化的假設

  • 了解 ARCH 和 GARCH 過程,以及如何撰寫相關的 Python 程式

詳細內容

本書使用 Python 作為計算工具。由於 Python 是免費的,任何學校或組織都可以下載並使用它。

本書根據各種金融主題進行組織。換句話說,第一版更專注於 Python,而第二版則真正嘗試將 Python 應用於金融。

本書首先解釋與 Python 相關的主題。然後我們處理 Python 的關鍵部分,解釋如貨幣時間價值、股票和債券評估、資本資產定價模型、多因子模型、時間序列分析、投資組合理論、期權和期貨等概念。

本書將幫助我們學習或複習量化金融的基本知識,並應用 Python 解決各種問題,例如估算 IBM 的市場風險、運行 Fama-French 三因子、五因子或 Fama-French-Carhart 四因子模型、估算五檔股票投資組合的 VaR、估算最佳投資組合,以及為一個包含 20 檔股票的投資組合構建有效邊界,並使用蒙地卡羅模擬。稍後,我們還將學習如何複製著名的 Black-Scholes-Merton 期權模型,以及如何定價特殊期權,如平均價格看漲期權。

風格與方法

本書採取逐步的方法來解釋 Python 中的函式庫和模組,以及如何使用它們來實作量化金融的各個方面。每個概念都深入解釋,並附有程式碼範例以便更好地理解。