Deep Learning with Hadoop (Paperback)
暫譯: 使用 Hadoop 的深度學習 (平裝本)

Dipayan Dev

  • 出版商: Packt Publishing
  • 出版日期: 2017-02-17
  • 定價: $1,330
  • 售價: 6.0$798
  • 語言: 英文
  • 頁數: 206
  • 裝訂: Paperback
  • ISBN: 1787124762
  • ISBN-13: 9781787124769
  • 相關分類: HadoopDeepLearning
  • 相關翻譯: Hadoop深度學習 (簡中版)
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Key Features

  • Get to grips with the deep learning concepts and set up Hadoop to put them to use
  • Implement and parallelize deep learning models on Hadoop s YARN framework
  • A comprehensive tutorial to distributed deep learning with Hadoop

Book Description

This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance.

Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann Machines and autoencoder using the popular deep learning library deeplearning4j.

Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising AutoEncoders with deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop.

By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop.

What you will learn

  • Explore Deep Learning and various models associated with it
  • Understand the challenges of implementing distributed deep learning with Hadoop and how to overcome it
  • Implement Convolutional Neural Network (CNN) with deeplearning4j
  • Delve into the implementation of Restricted Boltzmann Machines (RBM)
  • Understand the mathematical explanation for implementing Recurrent Neural Networks (RNN)
  • Get hands on practice of deep learning and their implementation with Hadoop.

About the Author

Dipayan Dev has completed his M.Tech from National Institute of Technology, Silchar with a first class first and is currently working as a software professional in Bengaluru, India. He has extensive knowledge and experience in non-relational database technologies, having primarily worked with large-scale data over the last few years. His core expertise lies in Hadoop Framework. During his postgraduation, Dipayan had built an infinite scalable framework for Hadoop, called Dr. Hadoop, which got published in top-tier SCI-E indexed journal of Springer. Dr. Hadoop has recently been cited by Goo Wikipedia in their Apache Hadoop article. Apart from that, he registers interest in a wide range of distributed system technologies, such as Redis, Apache Spark, Elasticsearch, Hive, Pig, Riak, and other NoSQL databases. Dipayan has also authored various research papers and book chapters, which are published by IEEE and top-tier Springer Journals.

Table of Contents

  1. Introduction to Deep Learning
  2. Distributed Deep Learning for Large-Scale Data
  3. Convolutional Neural Network
  4. Recurrent Neural Network
  5. Restricted Boltzmann Machines
  6. Autoencoders
  7. Miscellaneous Deep Learning Operations using Hadoop
  8. References

商品描述(中文翻譯)

#### 主要特點

- 理解深度學習概念並設置 Hadoop 以便實際應用
- 在 Hadoop 的 YARN 框架上實現和並行化深度學習模型
- 一個全面的 Hadoop 分散式深度學習教程

#### 書籍描述

本書將教您如何在深度神經網絡中部署大規模數據集,以獲得最佳性能。

本書從理解深度學習是什麼以及與深度神經網絡相關的各種模型開始,然後將向您展示如何設置 Hadoop 環境以進行深度學習。在本書中,您還將學習如何克服在使用大規模非結構化數據集實現分散式深度學習時所面臨的挑戰。本書還將展示如何使用流行的深度學習庫 deeplearning4j 實現和並行化廣泛使用的深度學習模型,如深度信念網絡(Deep Belief Networks)、卷積神經網絡(Convolutional Neural Networks)、遞歸神經網絡(Recurrent Neural Networks)、限制玻爾茲曼機(Restricted Boltzmann Machines)和自編碼器(autoencoder)。

深入的數學解釋和視覺表示將幫助您理解使用 deeplearning4j 設計和實現遞歸神經網絡和去噪自編碼器的過程。為了給您更實際的視角,本書還將教您如何在 Hadoop 上實現大規模視頻處理、圖像處理和自然語言處理。

在本書結束時,您將知道如何在分散式系統中使用 Hadoop 部署各種深度神經網絡。

#### 您將學到什麼

- 探索深度學習及其相關的各種模型
- 理解在 Hadoop 上實現分散式深度學習的挑戰及如何克服
- 使用 deeplearning4j 實現卷積神經網絡(CNN)
- 深入了解限制玻爾茲曼機(RBM)的實現
- 理解實現遞歸神經網絡(RNN)的數學解釋
- 實際操作深度學習及其在 Hadoop 上的實現。

#### 關於作者

**Dipayan Dev** 於國立技術學院(National Institute of Technology, Silchar)獲得碩士學位,成績優異,並目前在印度班加羅爾擔任軟體專業人士。他在非關聯數據庫技術方面擁有廣泛的知識和經驗,主要在過去幾年中處理大規模數據。他的核心專長在於 Hadoop 框架。在研究生期間,Dipayan 建立了一個無限可擴展的 Hadoop 框架,名為 Dr. Hadoop,該框架已發表在 Springer 的頂級 SCI-E 索引期刊中。最近,Dr. Hadoop 被 Goo Wikipedia 在其 Apache Hadoop 文章中引用。除此之外,他對各種分散式系統技術,如 Redis、Apache Spark、Elasticsearch、Hive、Pig、Riak 和其他 NoSQL 數據庫也有興趣。Dipayan 還撰寫了多篇研究論文和書籍章節,這些作品已由 IEEE 和頂級 Springer 期刊發表。

#### 目錄

1. 深度學習簡介
2. 大規模數據的分散式深度學習
3. 卷積神經網絡
4. 遞歸神經網絡
5. 限制玻爾茲曼機
6. 自編碼器
7. 使用 Hadoop 的其他深度學習操作
8. 參考文獻