Mastering Scala Machine Learning (Paperback)
暫譯: 精通 Scala 機器學習 (平裝本)
Alex Kozlov
- 出版商: Packt Publishing
- 出版日期: 2016-06-29
- 定價: $1,650
- 售價: 6.0 折 $990
- 語言: 英文
- 頁數: 310
- 裝訂: Paperback
- ISBN: 1785880888
- ISBN-13: 9781785880889
-
相關分類:
JVM 語言、Machine Learning
-
相關翻譯:
Scala機器學習(Mastering Scala Machine Learning) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$450$315 -
$780$616 -
$360$284 -
$1,330$1,264 -
$580$551 -
$454Spring 實戰, 4/e (Spring in Action, 4/e)
-
$699$552 -
$1,064Apache Spark Machine Learning Blueprints (Paperback)
-
$580$452 -
$1,422Sams Teach Yourself Apache Spark in 24 Hours (Paperback)
-
$320$250 -
$680$530 -
$580$458 -
$590$502 -
$2,200$2,090 -
$680$537 -
$590$460 -
$500$395 -
$360$281 -
$403Tensorflow:實戰Google深度學習框架
-
$480$379 -
$300$237 -
$680$537 -
$320$250
商品描述
Advance your skills in efficient data analysis and data processing using the powerful tools of Scala, Spark, and Hadoop
About This Book
- This is a primer on functional-programming-style techniques to help you efficiently process and analyze all of your data
- Get acquainted with the best and newest tools available such as Scala, Spark, Parquet and MLlib for machine learning
- Learn the best practices to incorporate new Big Data machine learning in your data-driven enterprise to gain future scalability and maintainability
Who This Book Is For
Mastering Scala Machine Learning is intended for enthusiasts who want to plunge into the new pool of emerging techniques for machine learning. Some familiarity with standard statistical techniques is required.
What You Will Learn
- Sharpen your functional programming skills in Scala using REPL
- Apply standard and advanced machine learning techniques using Scala
- Get acquainted with Big Data technologies and grasp why we need a functional approach to Big Data
- Discover new data structures, algorithms, approaches, and habits that will allow you to work effectively with large amounts of data
- Understand the principles of supervised and unsupervised learning in machine learning
- Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet
- Construct reliable and robust data pipelines and manage data in a data-driven enterprise
- Implement scalable model monitoring and alerts with Scala
In Detail
Since the advent of object-oriented programming, new technologies related to Big Data are constantly popping up on the market. One such technology is Scala, which is considered to be a successor to Java in the area of Big Data by many, like Java was to C/C++ in the area of distributed programing.
This book aims to take your knowledge to next level and help you impart that knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees.
Most of the data that we produce today is unstructured and raw, and you will learn to tackle this type of data with advanced topics such as regression, classification, integration, and working with graph algorithms. Finally, you will discover at how to use Scala to perform complex concept analysis, to monitor model performance, and to build a model repository. By the end of this book, you will have gained expertise in performing Scala machine learning and will be able to build complex machine learning projects using Scala.
Style and approach
This hands-on guide dives straight into implementing Scala for machine learning without delving much into mathematical proofs or validations. There are ample code examples and tricks that will help you sail through using the standard techniques and libraries. This book provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.
商品描述(中文翻譯)
**提升您在使用 Scala、Spark 和 Hadoop 進行高效數據分析和數據處理的技能**
## 本書介紹
- 本書是一本關於函數式編程風格技術的入門書,幫助您高效處理和分析所有數據
- 熟悉最新的最佳工具,如 Scala、Spark、Parquet 和用於機器學習的 MLlib
- 學習最佳實踐,將新的大數據機器學習納入您的數據驅動企業,以獲得未來的可擴展性和可維護性
## 本書適合誰
《掌握 Scala 機器學習》適合希望深入了解新興機器學習技術的愛好者。需要對標準統計技術有一定的熟悉度。
## 您將學到什麼
- 使用 REPL 鍛鍊您的 Scala 函數式編程技能
- 使用 Scala 應用標準和進階的機器學習技術
- 熟悉大數據技術,理解為何我們需要對大數據採取函數式方法
- 發現新的數據結構、算法、方法和習慣,使您能夠有效處理大量數據
- 理解機器學習中的監督學習和非監督學習原則
- 處理非結構化數據並使用 Kryo、Protobuf、Avro 和 AvroParquet 進行序列化
- 構建可靠且穩健的數據管道,並在數據驅動的企業中管理數據
- 使用 Scala 實現可擴展的模型監控和警報
## 詳細內容
自從物件導向編程出現以來,與大數據相關的新技術不斷在市場上湧現。其中一項技術是 Scala,許多人認為它是大數據領域中 Java 的繼任者,就像 Java 是 C/C++ 在分散式編程領域的繼任者一樣。
本書旨在提升您的知識水平,並幫助您將這些知識應用於構建高級應用程序,如社交媒體挖掘、智能新聞門戶等。在使用 REPL 進行函數式編程概念的快速回顧後,您將看到一些設置開發環境和處理數據的實用示例。然後,我們將探索使用 k-means 和決策樹與 Spark 和 MLlib 的工作。
我們今天產生的大多數數據都是非結構化和原始的,您將學會如何使用回歸、分類、整合和圖算法等進階主題來處理這類數據。最後,您將學會如何使用 Scala 進行複雜概念分析、監控模型性能和構建模型庫。在本書結束時,您將掌握 Scala 機器學習的專業知識,並能夠使用 Scala 構建複雜的機器學習項目。
## 風格與方法
這本實用指南直接進入 Scala 機器學習的實施,而不深入數學證明或驗證。書中提供了大量的代碼示例和技巧,幫助您輕鬆使用標準技術和庫。本書提供了來自實務界的實用示例,說明如何正確處理數據分析問題,特別是針對現代大數據數據集。