Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling
暫譯: 深度學習基礎:實用指南深入了解深度學習與神經網絡建模的基本原理
Wei Di, Anurag Bhardwaj, Jianing Wei
- 出版商: Packt Publishing
- 出版日期: 2018-01-29
- 售價: $1,670
- 貴賓價: 9.5 折 $1,587
- 語言: 英文
- 頁數: 284
- 裝訂: Paperback
- ISBN: 1785880365
- ISBN-13: 9781785880360
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$790$774 -
$880$695 -
$980$774 -
$590$460 -
$898Python Machine Learning, 2/e (Paperback)
-
$1,840$1,748 -
$403OpenCV 算法精解:基於 Python 與 C++
-
$699$594 -
$590$502 -
$2,010$1,910
商品描述
Get to grips with the essentials of deep learning by leveraging the power of Python
Key Features
- Your one-stop solution to get started with the essentials of deep learning and neural network modeling
- Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more
- Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner
Book Description
Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master.
This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more.
This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications.
What you will learn
- Get to grips with the core concepts of deep learning and neural networks
- Set up deep learning library such as TensorFlow
- Fine-tune your deep learning models for NLP and Computer Vision applications
- Unify different information sources, such as images, text, and speech through deep learning
- Optimize and fine-tune your deep learning models for better performance
- Train a deep reinforcement learning model that plays a game better than humans
- Learn how to make your models get the best out of your GPU or CPU
Who This Book Is For
Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python.
Table of Contents
- Why Deep Learning?
- Getting Yourself ready for deep learning
- Getting started with Neural Networks
- Deep learning in Computer Vision
- Natural language processing - vector representation
- Advanced Natural language processing
- Multi-modality
- Reinforcement Learning
- Deep Learning Hacks
- Deep Learning Trends
商品描述(中文翻譯)
掌握深度學習的基本要素,利用 Python 的強大功能
主要特點
- 一站式解決方案,幫助您開始學習深度學習和神經網絡建模的基本要素
- 訓練各種神經網絡,以解決自然語言處理、計算機視覺、語音識別等各種問題
- 涵蓋流行的 Python 庫,如 TensorFlow、Keras 等,並提供訓練、部署和優化深度學習模型的最佳建議
書籍描述
深度學習是當今人工智慧領域的一個熱門話題,可以被視為機器學習的一種進階形式,掌握起來相當棘手。
本書將幫助您邁出訓練高效深度學習模型的第一步,並將其應用於各種實際場景。您將建模、訓練和部署不同類型的神經網絡,如卷積神經網絡(Convolutional Neural Network)、遞迴神經網絡(Recurrent Neural Network),並看到它們在計算機視覺、自然語言處理、語音識別等現實領域中的一些應用。您將構建實用項目,如聊天機器人,實施強化學習以構建智能遊戲,並開發圖像標註和處理的專家系統。本書使用流行的 Python 庫 TensorFlow 來構建模型。本書還涵蓋了在訓練模型時可能遇到的各種問題的解決方案,如噪聲數據集、小數據集等。
本書不假設您對深度學習有任何先前的了解。到本書結束時,您將對深度學習和神經網絡建模的基本概念有堅實的理解,以及它們的實際應用。
您將學到什麼
- 掌握深度學習和神經網絡的核心概念
- 設置深度學習庫,如 TensorFlow
- 為自然語言處理和計算機視覺應用微調您的深度學習模型
- 通過深度學習統一不同的信息來源,如圖像、文本和語音
- 優化和微調您的深度學習模型以獲得更好的性能
- 訓練一個深度強化學習模型,使其在遊戲中表現超過人類
- 學習如何讓您的模型充分利用 GPU 或 CPU 的性能
本書適合誰
對深度學習有有限或無接觸的有志數據科學家和機器學習專家會發現本書非常有用。如果您正在尋找一本能讓您快速掌握深度學習和神經網絡基本知識的資源,本書就是為您而寫。由於書中的模型是使用流行的基於 Python 的庫,如 TensorFlow 和 Keras 訓練的,因此擁有良好的 Python 編程知識將會很有幫助。
目錄
- 為什麼選擇深度學習?
- 為深度學習做好準備
- 開始學習神經網絡
- 計算機視覺中的深度學習
- 自然語言處理 - 向量表示
- 進階自然語言處理
- 多模態
- 強化學習
- 深度學習技巧
- 深度學習趨勢