Data Manipulation with R, 2/e(Paperback)
Jaynal Abedin, Kishor Kumar Das
- 出版商: Packt Publishing
- 出版日期: 2015-03-31
- 售價: $1,340
- 貴賓價: 9.5 折 $1,273
- 語言: 英文
- 頁數: 161
- 裝訂: Paperback
- ISBN: 1785288814
- ISBN-13: 9781785288814
-
相關分類:
R 語言、Data Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,440$1,368 -
$990Simulation for Data Science with R
-
$1,680Big Data Analytics with R (Paperback)
-
$888R Data Mining Blueprints
相關主題
商品描述
Efficiently perform data manipulation using the split-apply-combine strategy in R
About This Book
- Perform data manipulation with add-on packages such as plyr, reshape, stringr, lubridate, and sqldf
- Learn about factor manipulation, string processing, and text manipulation techniques using the stringr and dplyr libraries
- Enhance your analytical skills in an intuitive way through step-by-step working examples
Who This Book Is For
This book is for all those who wish to learn about data manipulation from scratch and excel at aggregating data effectively. It is expected that you have basic knowledge of R and have previously done some basic administration work with R.
What You Will Learn
- Learn about R data types and their basic operations
- Work efficiently with string, factor, and date variables using stringr
- Understand group-wise data manipulation
- Work with different layouts of R datasets and interchange between layouts for varied purposes
- Manage bigger datasets using pylr and dpylr
- Perform data manipulation with add-on packages such as plyr, reshape, stringr, lubridate, and sqldf
- Manipulate datasets using SQL statements with the sqldf package
- Clean and structure raw data for data mining using text manipulation
In Detail
This book starts with the installation of R and how to go about using R and its libraries. We then discuss the mode of R objects and its classes and then highlight different R data types with their basic operations.
The primary focus on group-wise data manipulation with the split-apply-combine strategy has been explained with specific examples. The book also contains coverage of some specific libraries such as lubridate, reshape2, plyr, dplyr, stringr, and sqldf. You will not only learn about group-wise data manipulation, but also learn how to efficiently handle date, string, and factor variables along with different layouts of datasets using the reshape2 package.
By the end of this book, you will have learned about text manipulation using stringr, how to extract data from twitter using twitteR library, how to clean raw data, and how to structure your raw data for data mining.
商品描述(中文翻譯)
高效地使用R中的分割-應用-合併策略進行數據操作
關於本書
- 使用附加套件(如plyr、reshape、stringr、lubridate和sqldf)進行數據操作
- 使用stringr和dplyr庫學習因子操作、字符串處理和文本操作技術
- 通過逐步的實例來提高您的分析技能
本書適合對象
本書適合所有希望從頭開始學習數據操作並在有效地聚合數據方面取得優異成績的人。預計您具備基本的R知識並且之前曾使用R進行過一些基本的管理工作。
您將學到什麼
- 了解R數據類型及其基本操作
- 使用stringr高效處理字符串、因子和日期變量
- 理解分組數據操作
- 使用不同的R數據集佈局並在不同目的之間進行佈局轉換
- 使用plyr和dplyr處理更大的數據集
- 使用附加套件(如plyr、reshape、stringr、lubridate和sqldf)進行數據操作
- 使用sqldf套件使用SQL語句操作數據集
- 使用文本操作清理和結構化原始數據進行數據挖掘
詳細內容
本書首先介紹了R的安裝以及如何使用R及其庫。然後討論了R對象的模式和類別,並突出了不同的R數據類型及其基本操作。
本書重點介紹了分組數據操作的分割-應用-合併策略,並提供了具體的示例。本書還涵蓋了一些特定的庫,如lubridate、reshape2、plyr、dplyr、stringr和sqldf。您不僅將學習分組數據操作,還將學習如何使用reshape2套件高效處理日期、字符串和因子變量以及不同數據集佈局。
通過閱讀本書,您將學習使用stringr進行文本操作,使用twitteR庫從Twitter提取數據,清理原始數據以及為數據挖掘結構化原始數據。