Geospatial Development By Example with Python(Paperback)

Pablo Carreira

  • 出版商: Packt Publishing
  • 出版日期: 2016-01-29
  • 售價: $2,180
  • 貴賓價: 9.5$2,071
  • 語言: 英文
  • 頁數: 340
  • 裝訂: Paperback
  • ISBN: 1785282352
  • ISBN-13: 9781785282355
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Key Features

  • Learn the full geo-processing workflow using Python with open source packages
  • Create press-quality styled maps and data visualization with high-level and reusable code
  • Process massive datasets efficiently using parallel processing

Book Description

From Python programming good practices to the advanced use of analysis packages, this book teaches you how to write applications that will perform complex geoprocessing tasks that can be replicated and reused.

Much more than simple scripts, you will write functions to import data, create Python classes that represent your features, and learn how to combine and filter them.

With pluggable mechanisms, you will learn how to visualize data and the results of analysis in beautiful maps that can be batch-generated and embedded into documents or web pages.

Finally, you will learn how to consume and process an enormous amount of data very efficiently by using advanced tools and modern computers' parallel processing capabilities.

What you will learn

  • Prepare a development environment with all the tools needed for geo-processing with Python
  • Import point data and structure an application using Python's resources
  • Combine point data from multiple sources, creating intuitive and functional representations of geographic objects
  • Filter data by coordinates or attributes easily using pure Python
  • Make press-quality and replicable maps from any data
  • Download, transform, and use remote sensing data in your maps
  • Make calculations to extract information from raster data and show the results on beautiful maps
  • Handle massive amounts of data with advanced processing techniques
  • Process huge satellite images in an efficient way
  • Optimize geo-processing times with parallel processing

About the Author

Pablo Carreira is a Python programmer and a full stack developer living in Sao Paulo state, Brazil. He is now the lead developer of an advanced web platform for precision agriculture and actively uses Python as a backend solution for efficient geoprocessing.

Born in 1980, Brazil, Pablo graduated as an agronomical engineer. Being a programming enthusiast and self-taught since childhood, he learned programming as a hobby and later honored his techniques in order to solve work tasks.

Having 8 years of professional experience in geoprocessing, he uses Python along with geographic information systems in order to automate processes and solve problems related to precision agriculture, environmental analysis, and land division.

Table of Contents

  1. Preparing the Work Environment
  2. The Geocaching App
  3. Combining Multiple Data Sources
  4. Improving the App Search Capabilities
  5. Making Maps
  6. Working with Remote Sensing Images
  7. Extract Information from Raster Data
  8. Data Miner App
  9. Processing Big Images
  10. Parallel Processing

商品描述(中文翻譯)

關鍵特點
- 使用 Python 和開源套件學習完整的地理處理工作流程
- 使用高階且可重用的程式碼創建符合出版品質的地圖和數據視覺化
- 使用平行處理有效處理大量數據集

書籍描述
從 Python 程式設計的良好實踐到分析套件的進階使用,本書教你如何編寫應用程式,以執行可重複和可重用的複雜地理處理任務。
這不僅僅是簡單的腳本,你將編寫函數來導入數據,創建代表你的特徵的 Python 類,並學習如何組合和過濾它們。
透過可插拔的機制,你將學習如何在美觀的地圖中視覺化數據和分析結果,這些地圖可以批量生成並嵌入到文檔或網頁中。
最後,你將學習如何使用先進工具和現代計算機的平行處理能力,極其高效地消耗和處理大量數據。

你將學習的內容
- 準備一個開發環境,具備使用 Python 進行地理處理所需的所有工具
- 導入點數據並使用 Python 的資源結構化應用程式
- 從多個來源組合點數據,創建直觀且功能性的地理物件表示
- 輕鬆使用純 Python 根據坐標或屬性過濾數據
- 從任何數據製作符合出版品質且可重複的地圖
- 下載、轉換並在地圖中使用遙感數據
- 進行計算以從光柵數據中提取信息,並在美觀的地圖上顯示結果
- 使用先進的處理技術處理大量數據
- 高效處理巨大的衛星影像
- 使用平行處理優化地理處理時間

關於作者
**Pablo Carreira** 是一位 Python 程式設計師和全端開發者,居住在巴西聖保羅州。他目前是精準農業高級網路平台的首席開發者,並積極使用 Python 作為高效地理處理的後端解決方案。
Pablo 於1980年出生於巴西,畢業於農業工程學。他自幼便對程式設計充滿熱情並自學成才,最初將程式設計視為興趣,後來則運用所學技術解決工作任務。
擁有8年的地理處理專業經驗,他結合 Python 和地理信息系統,自動化流程並解決與精準農業、環境分析和土地劃分相關的問題。

目錄
1. 準備工作環境
2. 地理尋寶應用程式
3. 組合多個數據來源
4. 改進應用程式的搜尋能力
5. 製作地圖
6. 處理遙感影像
7. 從光柵數據中提取信息
8. 數據挖掘應用程式
9. 處理大型影像
10. 平行處理