NLTK Essentials (NLTK 基礎知識)

Nitin Hardeniya

相關主題

商品描述

Build cool NLP and machine learning applications using NLTK and other Python libraries

About This Book

  • Extract information from unstructured data using NLTK to solve NLP problems
  • Analyse linguistic structures in text and learn the concept of semantic analysis and parsing
  • Learn text analysis, text mining, and web crawling in a simplified manner

Who This Book Is For

If you are an NLP or machine learning enthusiast with some or no experience in text processing, then this book is for you. This book is also ideal for expert Python programmers who want to learn NLTK quickly.

What You Will Learn

  • Get a glimpse of the complexity of natural languages and how they are processed by machines
  • Clean and wrangle text using tokenization and chunking to help you better process data
  • Explore the different types of tags available and learn how to tag sentences
  • Create a customized parser and tokenizer to suit your needs
  • Build a real-life application with features such as spell correction, search, machine translation and a question answering system
  • Retrieve any data content using crawling and scraping
  • Perform feature extraction and selection, and build a classification system on different pieces of texts
  • Use various other Python libraries such as pandas, scikit-learn, matplotlib, and gensim
  • Analyse social media sites to discover trending topics and perform sentiment analysis

In Detail

Natural Language Processing (NLP) is the field of artificial intelligence and computational linguistics that deals with the interactions between computers and human languages. With the instances of human-computer interaction increasing, it's becoming imperative for computers to comprehend all major natural languages. Natural Language Toolkit (NLTK) is one such powerful and robust tool.

You start with an introduction to get the gist of how to build systems around NLP. We then move on to explore data science-related tasks, following which you will learn how to create a customized tokenizer and parser from scratch. Throughout, we delve into the essential concepts of NLP while gaining practical insights into various open source tools and libraries available in Python for NLP. You will then learn how to analyze social media sites to discover trending topics and perform sentiment analysis. Finally, you will see tools which will help you deal with large scale text.

By the end of this book, you will be confident about NLP and data science concepts and know how to apply them in your day-to-day work.

商品描述(中文翻譯)

使用NLTK和其他Python庫來構建出色的NLP和機器學習應用程式

關於本書
- 使用NLTK從非結構化數據中提取信息,解決NLP問題
- 分析文本中的語言結構,學習語義分析和解析的概念
- 簡化方式學習文本分析、文本挖掘和網絡爬蟲

本書適合對NLP或機器學習感興趣的人,無論有沒有文本處理經驗。對於想快速學習NLTK的專業Python程序員來說,本書也是理想的選擇。

你將學到什麼
- 了解自然語言的複雜性以及機器如何處理它們
- 使用分詞和分塊來清理和整理文本,以幫助更好地處理數據
- 探索不同類型的標籤,並學習如何對句子進行標記
- 創建自定義的解析器和分詞器以滿足你的需求
- 構建具有拼寫校正、搜索、機器翻譯和問答系統等功能的實際應用程式
- 使用爬蟲和抓取擷取任何數據內容
- 在不同的文本片段上執行特徵提取和選擇,並構建分類系統
- 使用其他Python庫,如pandas、scikit-learn、matplotlib和gensim
- 分析社交媒體網站以發現熱門話題並進行情感分析

詳細內容
自然語言處理(NLP)是人工智能和計算語言學的領域,涉及計算機與人類語言之間的交互作用。隨著人機交互實例的增加,計算機理解所有主要自然語言變得至關重要。自然語言工具包(NLTK)就是一個強大而穩健的工具。

我們首先介紹如何在NLP周圍構建系統的概要。然後,我們將探索與數據科學相關的任務,接著學習如何從頭開始創建自定義的分詞器和解析器。在整個過程中,我們深入探討NLP的基本概念,同時獲得有關Python中可用的各種開源工具和庫的實用見解。然後,你將學習如何分析社交媒體網站以發現熱門話題並進行情感分析。最後,你將看到幫助你處理大規模文本的工具。

通過閱讀本書,你將對NLP和數據科學概念充滿信心,並知道如何在日常工作中應用它們。