NumPy Essentials
Leo (Liang-Huan) Chin, Tanmay Dutta
- 出版商: Packt Publishing
- 出版日期: 2016-04-29
- 售價: $1,440
- 貴賓價: 9.5 折 $1,368
- 語言: 英文
- 頁數: 156
- 裝訂: Paperback
- ISBN: 1784393673
- ISBN-13: 9781784393670
-
相關分類:
Python
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$690$538 -
$480$379 -
$2,830$2,689 -
$520$406 -
$1,950$1,853 -
$2,880$2,736 -
$990$782 -
$680$537 -
$2,860$2,717 -
$340$333 -
$600$474
相關主題
商品描述
Key Features
- Optimize your Python scripts with powerful NumPy modules
- Explore the vast opportunities to build outstanding scientific/ analytical modules by yourself
- Packed with rich examples to help you master NumPy arrays and universal functions
Book Description
In today's world of science and technology, it's all about speed and flexibility. When it comes to scientific computing, NumPy tops the list. NumPy gives you both the speed and high productivity you need.
This book will walk you through NumPy using clear, step-by-step examples and just the right amount of theory. We will guide you through wider applications of NumPy in scientific computing and will then focus on the fundamentals of NumPy, including array objects, functions, and matrices, each of them explained with practical examples.
You will then learn about different NumPy modules while performing mathematical operations such as calculating the Fourier Transform; solving linear systems of equations, interpolation, extrapolation, regression, and curve fitting; and evaluating integrals and derivatives. We will also introduce you to using Cython with NumPy arrays and writing extension modules for NumPy code using the C API. This book will give you exposure to the vast NumPy library and help you build efficient, high-speed programs using a wide range of mathematical features.
What you will learn
- Manipulate the key attributes and universal functions of NumPy
- Utilize matrix and mathematical computation using linear algebra modules
- Implement regression and curve fitting for models
- Perform time frequency / spectral density analysis using the Fourier Transform modules
- Collate with the distutils and setuptools modules used by other Python libraries
- Establish Cython with NumPy arrays
- Write extension modules for NumPy code using the C API
- Build sophisticated data structures using NumPy array with libraries such as Panda and Scikits
About the Author
Liang-Huan (Leo) Chin is a Python programmer with more than five years' of experience, and is moving toward becoming a data scientist. He works for ESRI, California, USA, focusing on spatial-temporal data mining. He loves drawing maps and likes to figure out why things are so different spatially. He received an MA degree in Geography from State University of New York, Buffalo. When Leo isn't glued to a computer screen, he spends time on photography, traveling, and exploring the awesome restaurants in the world.
Tanmay Datta is a seasoned programmer with expertise in programming languages such as Python, C#, Haskell, and F#. He has extensive experience in developing numerical libraries and frameworks for an investment banking industry. He was also instrumental in designing and development of a risk framework in Python (Pandas, NumPy, and Django) for a wealth fund in Singapore. Tanmay has a Master's degree in Financial Engineering from NTU Singapore and certificationi computational finance from Tepper School of business, Carnegie Mellon University.
He has worked as a risk analyst at GIC Singapore, as a software developer (contract) at Standard Chartered, Singapore, and as a quantitative developer for ANZ Bank, Singapore.
商品描述(中文翻譯)
主要特點
- 使用強大的NumPy模組優化您的Python腳本
- 通過自己建立優秀的科學/分析模組,探索廣闊的機會
- 豐富的示例幫助您掌握NumPy數組和通用函數
書籍描述
在當今科學技術的世界中,速度和靈活性至關重要。在科學計算方面,NumPy名列前茅。NumPy為您提供了所需的速度和高生產力。
本書將通過清晰、逐步的示例和適量的理論引導您學習NumPy。我們將指導您在科學計算中更廣泛地應用NumPy,然後專注於NumPy的基礎知識,包括數組對象、函數和矩陣,並通過實際示例進行解釋。
然後,您將學習不同的NumPy模組,同時執行數學操作,例如計算傅立葉變換;解決線性方程組、插值、外推、回歸和曲線擬合;以及評估積分和導數。我們還將介紹使用Cython與NumPy數組以及使用C API為NumPy代碼編寫擴展模組。本書將讓您瞭解廣泛的NumPy庫,並幫助您使用各種數學功能構建高效、高速的程序。
您將學到什麼
- 操作NumPy的關鍵屬性和通用函數
- 使用線性代數模組進行矩陣和數學計算
- 為模型實現回歸和曲線擬合
- 使用傅立葉變換模組進行時間頻率/譜密度分析
- 與其他Python庫使用的distutils和setuptools模組協同工作
- 使用NumPy數組建立Cython
- 使用C API為NumPy代碼編寫擴展模組
- 使用NumPy數組與Panda和Scikits等庫構建複雜的數據結構
關於作者
Liang-Huan (Leo) Chin是一位擁有五年以上經驗的Python程序員,並正在邁向成為一名數據科學家。他在美國加利福尼亞州的ESRI工作,專注於時空數據挖掘。他喜歡繪製地圖,並喜歡弄清楚為什麼事物在空間上如此不同。他在紐約州立大學布法羅分校獲得地理學碩士學位。當Leo不在電腦屏幕前時,他喜歡攝影、旅行和探索世界上令人驚嘆的餐廳。
Tanmay Datta是一位經驗豐富的程序員,擅長Python、C#、Haskell和F#等編程語言。他在投資銀行業開發數值庫和框架方面擁有豐富的經驗。他還在新加坡的一家財富基金為Python(Pandas、NumPy和Django)設計和開發風險框架。Tanmay擁有新加坡國立大學的金融工程碩士學位,以及卡內基梅隆大學Tepper商學院的計算金融證書。
他曾在新加坡政府投資公司擔任風險分析師,在新加坡渣打銀行擔任軟件開發人員(合同),以及在新加坡澳新銀行擔任量化開發人員。