NumPy Essentials
暫譯: NumPy 基礎知識
Leo (Liang-Huan) Chin, Tanmay Dutta
- 出版商: Packt Publishing
- 出版日期: 2016-04-29
- 售價: $1,450
- 貴賓價: 9.5 折 $1,378
- 語言: 英文
- 頁數: 156
- 裝訂: Paperback
- ISBN: 1784393673
- ISBN-13: 9781784393670
-
相關分類:
Python
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$690$587 -
$480$379 -
$2,830$2,689 -
$520$260 -
$1,950$1,853 -
$2,900$2,755 -
$990$782 -
$680$537 -
$2,860$2,717 -
$340$333 -
$600$474
相關主題
商品描述
Key Features
- Optimize your Python scripts with powerful NumPy modules
- Explore the vast opportunities to build outstanding scientific/ analytical modules by yourself
- Packed with rich examples to help you master NumPy arrays and universal functions
Book Description
In today's world of science and technology, it's all about speed and flexibility. When it comes to scientific computing, NumPy tops the list. NumPy gives you both the speed and high productivity you need.
This book will walk you through NumPy using clear, step-by-step examples and just the right amount of theory. We will guide you through wider applications of NumPy in scientific computing and will then focus on the fundamentals of NumPy, including array objects, functions, and matrices, each of them explained with practical examples.
You will then learn about different NumPy modules while performing mathematical operations such as calculating the Fourier Transform; solving linear systems of equations, interpolation, extrapolation, regression, and curve fitting; and evaluating integrals and derivatives. We will also introduce you to using Cython with NumPy arrays and writing extension modules for NumPy code using the C API. This book will give you exposure to the vast NumPy library and help you build efficient, high-speed programs using a wide range of mathematical features.
What you will learn
- Manipulate the key attributes and universal functions of NumPy
- Utilize matrix and mathematical computation using linear algebra modules
- Implement regression and curve fitting for models
- Perform time frequency / spectral density analysis using the Fourier Transform modules
- Collate with the distutils and setuptools modules used by other Python libraries
- Establish Cython with NumPy arrays
- Write extension modules for NumPy code using the C API
- Build sophisticated data structures using NumPy array with libraries such as Panda and Scikits
About the Author
Liang-Huan (Leo) Chin is a Python programmer with more than five years' of experience, and is moving toward becoming a data scientist. He works for ESRI, California, USA, focusing on spatial-temporal data mining. He loves drawing maps and likes to figure out why things are so different spatially. He received an MA degree in Geography from State University of New York, Buffalo. When Leo isn't glued to a computer screen, he spends time on photography, traveling, and exploring the awesome restaurants in the world.
Tanmay Datta is a seasoned programmer with expertise in programming languages such as Python, C#, Haskell, and F#. He has extensive experience in developing numerical libraries and frameworks for an investment banking industry. He was also instrumental in designing and development of a risk framework in Python (Pandas, NumPy, and Django) for a wealth fund in Singapore. Tanmay has a Master's degree in Financial Engineering from NTU Singapore and certificationi computational finance from Tepper School of business, Carnegie Mellon University.
He has worked as a risk analyst at GIC Singapore, as a software developer (contract) at Standard Chartered, Singapore, and as a quantitative developer for ANZ Bank, Singapore.
商品描述(中文翻譯)
#### 主要特點
- 使用強大的 NumPy 模組來優化您的 Python 腳本
- 探索自行構建卓越科學/分析模組的廣泛機會
- 充滿豐富的範例,幫助您掌握 NumPy 陣列和通用函數
#### 書籍描述
在當今的科學和技術世界中,一切都關乎速度和靈活性。在科學計算方面,NumPy 名列前茅。NumPy 為您提供所需的速度和高生產力。
本書將通過清晰的逐步範例和適量的理論引導您學習 NumPy。我們將指導您了解 NumPy 在科學計算中的更廣泛應用,然後專注於 NumPy 的基本概念,包括陣列物件、函數和矩陣,並用實際範例進行解釋。
接下來,您將學習不同的 NumPy 模組,同時執行數學運算,例如計算傅立葉變換;解決線性方程組、插值、外推、回歸和曲線擬合;以及評估積分和導數。我們還將介紹如何使用 Cython 與 NumPy 陣列,並使用 C API 為 NumPy 代碼編寫擴展模組。本書將讓您接觸到廣泛的 NumPy 函式庫,並幫助您使用各種數學特性構建高效、高速的程式。
#### 您將學到的內容
- 操作 NumPy 的關鍵屬性和通用函數
- 使用線性代數模組進行矩陣和數學計算
- 為模型實現回歸和曲線擬合
- 使用傅立葉變換模組執行時間頻率/頻譜密度分析
- 與其他 Python 函式庫使用的 distutils 和 setuptools 模組進行整合
- 與 NumPy 陣列建立 Cython
- 使用 C API 為 NumPy 代碼編寫擴展模組
- 使用 NumPy 陣列與 Panda 和 Scikits 等函式庫構建複雜的數據結構
#### 關於作者
**Liang-Huan (Leo) Chin** 是一位擁有超過五年經驗的 Python 程式設計師,正朝著成為數據科學家的方向發展。他在美國加州的 ESRI 工作,專注於時空數據挖掘。他喜歡繪製地圖,並喜歡探索為何事物在空間上如此不同。他在紐約州立大學水牛城校區獲得地理學碩士學位。當 Leo 不在電腦螢幕前時,他會花時間攝影、旅行,並探索世界上令人驚嘆的餐廳。
**Tanmay Datta** 是一位經驗豐富的程式設計師,精通 Python、C#、Haskell 和 F# 等程式語言。他在為投資銀行業開發數值函式庫和框架方面擁有豐富的經驗。他在新加坡為一個財富基金設計和開發了一個基於 Python(Pandas、NumPy 和 Django)的風險框架,發揮了重要作用。Tanmay 擁有新加坡國立大學的金融工程碩士學位,以及卡內基梅隆大學 Tepper 商學院的計算金融認證。
他曾在新加坡 GIC 擔任風險分析師,在新加坡渣打銀行擔任軟體開發人員(合約),以及在新加坡 ANZ 銀行擔任量化開發人員。