Scala for Machine Learning
Patrick R. Nicolas
- 出版商: Packt Publishing
- 出版日期: 2014-12-22
- 售價: $2,520
- 貴賓價: 9.5 折 $2,394
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 1783558741
- ISBN-13: 9781783558742
-
相關分類:
JVM 語言、Machine Learning
下單後立即進貨 (約3~4週)
相關主題
商品描述
About This Book
- Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and source code
- Leverage your expertise in Scala programming to create and customize AI applications with your own scalable machine learning algorithms
- Experiment with different techniques, and evaluate their benefits and limitations using real-world financial applications, in a tutorial style
Who This Book Is For
Are you curious about AI? All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!
What You Will Learn
- Build dynamic workflows for scientific computing
- Leverage open source libraries to extract patterns from time series
- Write your own classification, clustering, or evolutionary algorithm
- Perform relative performance tuning and evaluation of Spark
- Master probabilistic models for sequential data
- Experiment with advanced techniques such as regularization and kernelization
- Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters
- Apply key learning strategies to a technical analysis of financial markets
In Detail
The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering designs, biometrics, and trading strategies, to detection of genetic anomalies.
The book begins with an introduction to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits.
Next, you'll learn about data preprocessing and filtering techniques. Following this, you'll move on to clustering and dimension reduction, Naive Bayes, regression models, sequential data, regularization and kernelization, support vector machines, neural networks, generic algorithms, and re-enforcement learning. A review of the Akka framework and Apache Spark clusters concludes the tutorial.
商品描述(中文翻譯)
利用 Scala 和機器學習構建和研究能夠從數據中學習的系統
關於本書
- 探索各種數據處理、機器學習和遺傳算法,透過圖表、數學公式和源代碼
- 利用您在 Scala 程式設計方面的專業知識,創建和自定義具有可擴展機器學習算法的 AI 應用程序
- 以教程風格實驗不同技術,並使用真實的金融應用評估其優缺點
本書適合誰
您對 AI 感到好奇嗎?您只需對 Scala 程式語言有良好的理解、基本的統計知識、對大數據處理的濃厚興趣,以及這本書!
您將學到什麼
- 為科學計算構建動態工作流程
- 利用開源庫從時間序列中提取模式
- 編寫自己的分類、聚類或進化算法
- 執行 Spark 的相對性能調整和評估
- 精通序列數據的概率模型
- 實驗高級技術,如正則化和核化
- 使用 Scala 並行集合、Akka 演員和 Apache Spark 集群解決大數據問題
- 將關鍵學習策略應用於金融市場的技術分析
詳細內容
通過數據聚類和分類發現信息,正成為競爭組織的一個關鍵區別因素。機器學習應用無處不在,從自駕車、工程設計、生物識別、交易策略到基因異常檢測。
本書首先介紹 Scala 程式語言的功能特性,這些特性對於創建機器學習算法至關重要,例如依賴注入和隱式參數。
接下來,您將學習數據預處理和過濾技術。隨後,您將進入聚類和降維、朴素貝葉斯、回歸模型、序列數據、正則化和核化、支持向量機、神經網絡、遺傳算法和強化學習。最後,將對 Akka 框架和 Apache Spark 集群進行回顧,結束本教程。