Mastering Scientific Computing with R
暫譯: 精通 R 的科學計算

Paul Gerrard, Radia M. Johnson

  • 出版商: Packt Publishing
  • 出版日期: 2015-02-07
  • 售價: $2,200
  • 貴賓價: 9.5$2,090
  • 語言: 英文
  • 頁數: 483
  • 裝訂: Paperback
  • ISBN: 1783555254
  • ISBN-13: 9781783555253
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Employ professional quantitative methods to answer scientific questions with a powerful open source data analysis environment

About This Book

  • Perform publication-quality science using R
  • Use some of R's most powerful and least known features to solve complex scientific computing problems
  • Learn how to create visual illustrations of scientific results

Who This Book Is For

If you want to learn how to quantitatively answer scientific questions for practical purposes using the powerful R language and the open source R tool ecosystem, this book is ideal for you. It is ideally suited for scientists who understand scientific concepts, know a little R, and want to be able to start applying R to be able to answer empirical scientific questions. Some R exposure is helpful, but not compulsory.

What You Will Learn

  • Master data management in R
  • Perform hypothesis tests using both parametric and nonparametric methods
  • Understand how to perform statistical modeling using linear methods
  • Model nonlinear relationships in data with kernel density methods
  • Use matrix operations to improve coding productivity
  • Utilize the observed data to model unobserved variables
  • Deal with missing data using multiple imputations
  • Simplify high-dimensional data using principal components, singular value decomposition, and factor analysis

In Detail

With this book, you will learn not just about R, but how to use R to answer conceptual, scientific, and experimental questions.

Beginning with an overview of fundamental R concepts, you'll learn how R can be used to achieve the most commonly needed scientific data analysis tasks: testing for statistically significant differences between groups and model relationships in data. You will delve into linear algebra and matrix operations with an emphasis not on the R syntax, but on how these operations can be used to address common computational or analytical needs. This book also covers the application of matrix operations for the purpose of finding structure in high-dimensional data using the principal component, exploratory factor, and confirmatory factor analysis in addition to structural equation modeling. You will also master methods for simulation and learn about an advanced analytical method.

商品描述(中文翻譯)

運用專業的定量方法,利用強大的開源數據分析環境回答科學問題

本書介紹


  • 使用 R 進行出版品質的科學研究

  • 利用 R 的一些最強大且最不為人知的功能來解決複雜的科學計算問題

  • 學習如何創建科學結果的視覺化插圖

本書適合誰

如果您想學習如何使用強大的 R 語言和開源 R 工具生態系統,定量回答科學問題以達到實際目的,那麼這本書非常適合您。它特別適合那些理解科學概念、對 R 有一些了解並希望能夠開始應用 R 來回答實證科學問題的科學家。對 R 有一些接觸會有所幫助,但不是必須的。

您將學到什麼

  • 掌握 R 中的數據管理
  • 使用參數和非參數方法進行假設檢驗
  • 理解如何使用線性方法進行統計建模
  • 使用核密度方法建模數據中的非線性關係
  • 利用矩陣運算提高編碼生產力
  • 利用觀察到的數據來建模未觀察到的變數
  • 使用多重插補處理缺失數據
  • 使用主成分分析、奇異值分解和因子分析簡化高維數據

詳細內容

通過這本書,您將學習的不僅僅是 R,還有如何使用 R 來回答概念性、科學性和實驗性問題。

從 R 的基本概念概述開始,您將學習如何使用 R 來完成最常見的科學數據分析任務:檢測組之間的統計顯著差異和建模數據中的關係。您將深入了解線性代數和矩陣運算,重點不在於 R 語法,而在於這些運算如何用來解決常見的計算或分析需求。本書還涵蓋了矩陣運算的應用,旨在利用主成分分析、探索性因子分析和驗證性因子分析以及結構方程模型來尋找高維數據中的結構。您還將掌握模擬方法並了解一種先進的分析方法。