Mastering Python Scientific Computing
暫譯: 掌握 Python 科學計算
Hemant Kumar Mehta
- 出版商: Packt Publishing
- 出版日期: 2015-09-28
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 300
- 裝訂: Paperback
- ISBN: 1783288825
- ISBN-13: 9781783288823
-
相關分類:
Python、程式語言
海外代購書籍(需單獨結帳)
商品描述
A complete guide for Python programmers to master scientific computing using Python APIs and tools
About This Book
- The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered.
- Most of the Python APIs and tools used in scientific computing are discussed in detail
- The concepts are discussed with suitable example programs
Who This Book Is For
If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming.
What You Will Learn
- Fundamentals and components of scientific computing
- Scientific computing data management
- Performing numerical computing using NumPy and SciPy
- Concepts and programming for symbolic computing using SymPy
- Using the plotting library matplotlib for data visualization
- Data analysis and visualization using Pandas, matplotlib, and IPython
- Performing parallel and high performance computing
- Real-life case studies and best practices of scientific computing
In Detail
In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing.
At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python.
The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs.
Style and approach
This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.
商品描述(中文翻譯)
Python 程式設計師掌握科學計算的完整指南,使用 Python API 和工具
本書介紹
- 涵蓋從科學計算的基礎到涉及平行和大規模計算的進階概念。
- 詳細討論科學計算中使用的大多數 Python API 和工具。
- 以適當的範例程式來討論這些概念。
本書適合誰閱讀
如果您是 Python 程式設計師並希望接觸科學計算,本書適合您。書中預期您對 Python 程式設計的各種概念已有所了解。
您將學到什麼
- 科學計算的基本原理和組成部分
- 科學計算數據管理
- 使用 NumPy 和 SciPy 進行數值計算
- 使用 SymPy 進行符號計算的概念和程式設計
- 使用繪圖庫 matplotlib 進行數據可視化
- 使用 Pandas、matplotlib 和 IPython 進行數據分析和可視化
- 執行平行和高效能計算
- 科學計算的實際案例研究和最佳實踐
詳細內容
在當今世界,隨著理論和實驗工作的發展,科學計算已成為科學學科的重要組成部分。數值計算、模擬和計算機建模在當今時代佔據了實驗和理論論文的絕大多數。在科學方法中,重複性和可重現性是兩個重要的貢獻因素。完整且具體的科學結果應該是可重現和可複製的。Python 適合用於科學計算。龐大的用戶社群、豐富的幫助和文檔、大量的科學庫和環境、卓越的性能以及良好的支持,使 Python 成為科學計算的絕佳選擇。
目前,Python 是開發科學工作流程的首選之一,本書針對現有的 Python 開發者,幫助他們掌握這一領域。書中主要學習的內容包括科學工作流程的概念、管理科學工作流程數據以及使用 Python 對這些數據進行計算。
本書討論了 NumPy、SciPy、SymPy、matplotlib、Pandas 和 IPython,並提供了多個範例程式。
風格與方法
本書採用實作方法來解釋與科學計算相關的複雜概念。它詳細說明了各種 API,並使用適當的範例。