Machine Learning with Spark - Tackle Big Data with Powerful Spark Machine Learning Algorithms (Paperback)
Nick Pentreath
- 出版商: Packt Publishing
- 出版日期: 2015-02-27
- 定價: $1,650
- 售價: 5.0 折 $825
- 語言: 英文
- 頁數: 329
- 裝訂: Paperback
- ISBN: 1783288515
- ISBN-13: 9781783288519
-
相關分類:
Spark、大數據 Big-data、Machine Learning、Algorithms-data-structures
-
相關翻譯:
Spark 機器學習 (簡中版)
立即出貨(限量) (庫存=3)
買這商品的人也買了...
-
$1,710$1,625 -
$1,200$948 -
$499$473 -
$1,040ZooKeeper: Distributed process coordination (Paperback)
-
$1,650$1,568 -
$680$578 -
$780$616 -
$1,056Learning Chef: A Guide to Configuration Management and Automation (Paperback)
-
$1,560$1,482 -
$360$284 -
$690$538 -
$680$537 -
$380$300 -
$540$459 -
$825Machine Learning in Java(Paperback)
-
$460$363 -
$500$395 -
$750$638 -
$653Spark權威指南
-
$541大數據處理框架Apache Spark設計與實現(全彩)
-
$780$616 -
$580$458 -
$607實用推薦系統
-
$890$703 -
$620$490
相關主題
商品描述
Create scalable machine learning applications to power a modern data-driven business using Spark
About This Book
- A practical tutorial with real-world use cases allowing you to develop your own machine learning systems with Spark
- Combine various techniques and models into an intelligent machine learning system
- Use Spark's powerful tools to load, analyze, clean, and transform your data
Who This Book Is For
If you are a Scala, Java, or Python developer with an interest in machine learning and data analysis and are eager to learn how to apply common machine learning techniques at scale using the Spark framework, this is the book for you. While it may be useful to have a basic understanding of Spark, no previous experience is required.
In Detail
Apache Spark is a framework for distributed computing that is designed from the ground up to be optimized for low latency tasks and in-memory data storage. It is one of the few frameworks for parallel computing that combines speed, scalability, in-memory processing, and fault tolerance with ease of programming and a flexible, expressive, and powerful API design.
This book guides you through the basics of Spark's API used to load and process data and prepare the data to use as input to the various machine learning models. There are detailed examples and real-world use cases for you to explore common machine learning models including recommender systems, classification, regression, clustering, and dimensionality reduction. You will cover advanced topics such as working with large-scale text data, and methods for online machine learning and model evaluation using Spark Streaming.
商品描述(中文翻譯)
使用Spark創建可擴展的機器學習應用程序,為現代數據驅動的業務提供動力
關於本書
- 實用的教程,帶有真實世界的用例,讓您能夠使用Spark開發自己的機器學習系統
- 將各種技術和模型結合成智能的機器學習系統
- 使用Spark強大的工具來加載、分析、清理和轉換數據
本書適合對象
如果您是Scala、Java或Python開發人員,對機器學習和數據分析感興趣,並渴望學習如何使用Spark框架在大規模上應用常見的機器學習技術,那麼這本書適合您。雖然具備基本的Spark理解可能有所幫助,但不需要有先前的經驗。
詳細內容
Apache Spark是一個分布式計算框架,從頭開始設計,以優化低延遲任務和內存數據存儲。它是少數幾個結合了速度、可擴展性、內存處理和容錯性的並行計算框架之一,並且易於編程,具有靈活、表達力強和功能強大的API設計。
本書將引導您了解Spark的API基礎知識,用於加載和處理數據,並準備將數據用作各種機器學習模型的輸入。書中提供了詳細的示例和真實世界的用例,讓您探索常見的機器學習模型,包括推薦系統、分類、回歸、聚類和降維。您還將涵蓋高級主題,如處理大規模文本數據,以及使用Spark Streaming進行在線機器學習和模型評估的方法。