Practical Data Analysis
暫譯: 實用數據分析
Hector Cuesta
- 出版商: Packt Publishing
- 出版日期: 2013-10-25
- 售價: $2,220
- 貴賓價: 9.5 折 $2,109
- 語言: 英文
- 頁數: 360
- 裝訂: Paperback
- ISBN: 1783280999
- ISBN-13: 9781783280995
-
相關分類:
Data Science
-
相關翻譯:
實用資料分析 (Practical Data Analysis) (簡中版)
已過版
商品描述
For small businesses, analyzing the information contained in their data using open source technology could be game-changing. All you need is some basic programming and mathematical skills to do just that.
Overview
- Explore how to analyze your data in various innovative ways and turn them into insight
- Learn to use the D3.js visualization tool for exploratory data analysis
- Understand how to work with graphs and social data analysis
- Discover how to perform advanced query techniques and run MapReduce on MongoDB
In Detail
Plenty of small businesses face big amounts of data but lack the internal skills to support quantitative analysis. Understanding how to harness the power of data analysis using the latest open source technology can lead them to providing better customer service, the visualization of customer needs, or even the ability to obtain fresh insights about the performance of previous products. Practical Data Analysis is a book ideal for home and small business users who want to slice and dice the data they have on hand with minimum hassle.
Practical Data Analysis is a hands-on guide to understanding the nature of your data and turn it into insight. It will introduce you to the use of machine learning techniques, social networks analytics, and econometrics to help your clients get insights about the pool of data they have at hand. Performing data preparation and processing over several kinds of data such as text, images, graphs, documents, and time series will also be covered.
Practical Data Analysis presents a detailed exploration of the current work in data analysis through self-contained projects. First you will explore the basics of data preparation and transformation through OpenRefine. Then you will get started with exploratory data analysis using the D3js visualization framework. You will also be introduced to some of the machine learning techniques such as, classification, regression, and clusterization through practical projects such as spam classification, predicting gold prices, and finding clusters in your Facebook friends' network. You will learn how to solve problems in text classification, simulation, time series forecast, social media, and MapReduce through detailed projects. Finally you will work with large amounts of Twitter data using MapReduce to perform a sentiment analysis implemented in Python and MongoDB.
Practical Data Analysis contains a combination of carefully selected algorithms and data scrubbing that enables you to turn your data into insight.
What you will learn from this book
- Work with data to get meaningful results from your data analysis projects
- Visualize your data to find trends and correlations
- Build your own image similarity search engine
- Learn how to forecast numerical values from time series data
- Create an interactive visualization for your social media graph
- Explore the MapReduce framework in MongoDB
- Create interactive simulations with D3js
Approach
Practical Data Analysis is a practical, step-by-step guide to empower small businesses to manage and analyze your data and extract valuable information from the data
Who this book is written for
This book is for developers, small business users, and analysts who want to implement data analysis and visualization for their company in a practical way. You need no prior experience with data analysis or data processing; however, basic knowledge of programming, statistics, and linear algebra is assumed.
商品描述(中文翻譯)
對於小型企業來說,使用開源技術分析其數據中所包含的信息可能會帶來顯著的變化。您只需要一些基本的程式設計和數學技能即可實現這一目標。
概述
- 探索如何以各種創新方式分析您的數據並將其轉化為洞察
- 學習使用 D3.js 可視化工具進行探索性數據分析
- 了解如何處理圖形和社交數據分析
- 發現如何執行高級查詢技術並在 MongoDB 上運行 MapReduce
詳細內容
許多小型企業面臨大量數據,但缺乏支持定量分析的內部技能。了解如何利用最新的開源技術來發揮數據分析的力量,可以幫助他們提供更好的客戶服務、可視化客戶需求,甚至獲得有關先前產品表現的新見解。《實用數據分析》是一本理想的書籍,適合希望以最小麻煩處理手頭數據的家庭和小型企業用戶。
《實用數據分析》是一本實用指南,幫助您理解數據的本質並將其轉化為洞察。它將介紹機器學習技術、社交網絡分析和計量經濟學的使用,幫助您的客戶獲得有關他們手頭數據池的見解。還將涵蓋對文本、圖像、圖形、文檔和時間序列等多種類型數據進行數據準備和處理。
《實用數據分析》通過自包含的項目詳細探索當前的數據分析工作。首先,您將通過 OpenRefine 探索數據準備和轉換的基本知識。然後,您將開始使用 D3.js 可視化框架進行探索性數據分析。您還將通過實際項目(如垃圾郵件分類、預測黃金價格和在 Facebook 朋友網絡中尋找聚類)介紹一些機器學習技術,如分類、回歸和聚類。您將學習如何通過詳細項目解決文本分類、模擬、時間序列預測、社交媒體和 MapReduce 中的問題。最後,您將使用 MapReduce 處理大量 Twitter 數據,執行在 Python 和 MongoDB 中實現的情感分析。
《實用數據分析》包含精心挑選的算法和數據清理的組合,使您能夠將數據轉化為洞察。
您將從本書中學到什麼
- 處理數據以從數據分析項目中獲得有意義的結果
- 可視化您的數據以發現趨勢和相關性
- 構建自己的圖像相似性搜索引擎
- 學習如何從時間序列數據中預測數值
- 為您的社交媒體圖創建互動可視化
- 探索 MongoDB 中的 MapReduce 框架
- 使用 D3.js 創建互動模擬
方法
《實用數據分析》是一本實用的逐步指南,旨在幫助小型企業管理和分析數據,並從中提取有價值的信息。
本書的讀者對象
本書適合希望以實用方式為其公司實施數據分析和可視化的開發人員、小型企業用戶和分析師。您不需要具備數據分析或數據處理的先前經驗;然而,假設您具備基本的程式設計、統計和線性代數知識。