Mastering Java for Data Science

Alexey Grigorev

  • 出版商: Packt Publishing
  • 出版日期: 2017-04-28
  • 定價: $1,650
  • 售價: 8.0$1,320
  • 語言: 英文
  • 頁數: 364
  • 裝訂: Paperback
  • ISBN: 1782174273
  • ISBN-13: 9781782174271
  • 相關分類: Java 程式語言Data Science
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Key Features

  • This comprehensive book shows you exactly how you can take your Java data science applications to production seamlessly
  • Dive deep into analytics, supervised and unsupervised learning, and much more with ease
  • Explore Java's various libraries to efficiently build and deploy data applications for the enterprise

Book Description

Java is the language of choice if you want to bring data science to production, thanks to its stability and rich set of libraries. Major big data solutions including Hadoop are written in Java. This book will teach you how to perform data analysis on big data in a much more sophisticated manner. If you are willing to take your data products to enterprise without changing your stack, this book will tell you how to do it with ease.

This book will quickly brush up on what you already know about using Java in data science applications and will then dive quickly into the advanced concepts to implement data science in production. The book covers topics such as advanced data science algorithms, preparing tricky data, advanced clustering, regression, classification, prediction, machine learning, and more.

We'll teach you how data science can be used effectively to analyze unstructured data and big data. This book will enable you to tackle the problems of advanced visualization, advanced statistics, scaling data science applications, deploying these applications in production, and many more. You will also learn about natural language processing, real-time analytics, deep learning, and neural networks.

What you will learn

  • Get a solid understanding of the data processing toolbox available in Java
  • Explore the data science ecosystem available in Java and other JVM languages
  • Understand when to use Java and what is best to do outside of Java
  • Deal with the machine learning task at hand and bring the results directly to production
  • Get state-of-the-art performance with xgboost and deeplearning4j
  • Build applications that scale and process large amounts of data in real time

商品描述(中文翻譯)

《主要特點》
- 本書全面展示如何無縫地將Java數據科學應用帶入生產環境
- 輕鬆深入研究分析、監督學習、非監督學習等各種高級主題
- 探索Java的各種庫,高效地構建和部署企業數據應用

《書籍描述》
Java是將數據科學應用帶入生產環境的首選語言,得益於其穩定性和豐富的庫。包括Hadoop在內的主要大數據解決方案都是用Java編寫的。本書將教你如何以更高級的方式對大數據進行數據分析。如果你想在不改變現有技術堆棧的情況下將數據產品帶入企業,本書將告訴你如何輕鬆實現。

本書將快速回顧你已經了解的有關在數據科學應用中使用Java的知識,然後迅速深入探討實現數據科學在生產環境中的高級概念。本書涵蓋了高級數據科學算法、處理棘手數據、高級聚類、回歸、分類、預測、機器學習等主題。

我們將教你如何有效地使用數據科學來分析非結構化數據和大數據。本書將使你能夠應對高級可視化、高級統計、數據科學應用的擴展、在生產環境中部署這些應用等問題。你還將學習自然語言處理、實時分析、深度學習和神經網絡等知識。

《你將學到什麼》
- 瞭解Java中可用的數據處理工具箱
- 探索Java和其他JVM語言中可用的數據科學生態系統
- 理解何時使用Java以及何時在Java之外進行操作
- 處理機器學習任務並將結果直接帶入生產環境
- 使用xgboost和deeplearning4j獲得最先進的性能
- 構建能夠實時處理大量數據的應用程式