The Book of Dash: Build Dashboards with Python and Plotly (Paperback)
暫譯: Dash 書籍:使用 Python 和 Plotly 建立儀表板 (平裝本)

Schroeder, Adam, Mayer, Christian, Ward, Ann Marie

買這商品的人也買了...

商品描述

Create stunning interactive dashboard applications in Python with the Dash visualization and data analysis tool. Build interfaces that make sense of your data, and make it pretty.

A swift and practical introduction to building interactive data visualization apps in Python, known as dashboards. You've seen dashboards before; think election result visualizations you can update in real time, or population maps you can filter by demographic. With the Python Dash library you'll create analytic dashboards that present data in effective, usable, elegant ways in just a few lines of code.

The book is fast-paced and caters to those entirely new to dashboards. It will talk you through the necessary software, then get straight into building the dashboards themselves. You'll learn the basic format of a Dash app in a Twitter analysis dashboard that tracks numbers of likes over time. You'll then build up skills through three more sophisticated projects. The first compares world data in three areas: volume of internet usage, percentage of parliament seats held by women, and CO2 emissions; the second is a financial portfolio dashboard that models your investments; and the third is visualizesmachine learning algorithms. The final chapter sets you up with some useful final skills, like debugging your code and applying color themes.

In this book you will:

  • Create and run your first Dash apps
  • Use the pandas library to manipulate and analyze social media and API data
  • Create a variety of stunning and effective charts using Plotly
  • Learn to use bar charts, chloropleth maps, contour plots, and more
  • Examine and build on existing apps written by the pros

  • Dash combines several technologies to get you building dashboards quickly and efficiently. This book will do the same.

商品描述(中文翻譯)

使用 Dash 視覺化和數據分析工具在 Python 中創建驚人的互動式儀表板應用程式。構建能夠理解您的數據並使其美觀的介面。

這是一本快速且實用的入門書,介紹如何在 Python 中構建互動式數據視覺化應用程式,稱為儀表板。您可能見過儀表板;想像一下可以實時更新的選舉結果視覺化,或可以按人口統計篩選的人口地圖。使用 Python Dash 庫,您將能夠在幾行代碼中創建以有效、可用和優雅的方式呈現數據的分析儀表板。

本書節奏快速,適合完全不熟悉儀表板的讀者。它將引導您了解所需的軟體,然後直接進入儀表板的構建。您將學習在一個 Twitter 分析儀表板中 Dash 應用的基本格式,該儀表板跟踪隨時間變化的喜歡數。接著,您將通過三個更複雜的專案來提升技能。第一個專案比較三個領域的全球數據:互聯網使用量、女性在國會中所佔的席位百分比以及二氧化碳排放量;第二個專案是一個金融投資組合儀表板,模擬您的投資;第三個專案則視覺化機器學習算法。最後一章將幫助您掌握一些有用的技能,例如除錯您的代碼和應用顏色主題。

在本書中,您將:


  • 創建並運行您的第一個 Dash 應用

  • 使用 pandas 庫來操作和分析社交媒體和 API 數據

  • 使用 Plotly 創建各種驚人且有效的圖表

  • 學習使用條形圖、色塊圖、輪廓圖等

  • 檢查並基於專業人士編寫的現有應用進行構建



  • Dash 結合了多種技術,讓您能夠快速有效地構建儀表板。本書也將做到這一點。

作者簡介

Adam Schroeder has been teaching Plotly Dash for over two years on YouTube as @CharmingData. His videos have over 60 thousand views per month. Adam is passionate about helping people learn data visualization. He has an M.A. in Government and Conflict Resolution and currently works at Plotly.

Christian Mayer has a PhD in computer science and is the founder of the popular Python site Finxter.com, an educational platform that helps more than 3 million people a year learn to code. He has published a number of books, including the Coffee Break Python series, and is the author of Python One-Liners (No Starch Press, 2020).

Ann Marie Ward is a Dash contributor and a moderator on the Dash community forum. Ann Marie has a BA in Economics and is a retired CEO. She discovered Dash when searching for a better way to analyze financial data and was so amazed by what's possible to create with Dash that she started to learn Python, JavaScript and R. Her contributions to Dash include improving documentation, fixing bugs, and adding features.

作者簡介(中文翻譯)

亞當·施羅德(Adam Schroeder)在YouTube上以@CharmingData的身份教授Plotly Dash已超過兩年。他的影片每月擁有超過六萬次的觀看次數。亞當熱衷於幫助人們學習數據視覺化。他擁有政府與衝突解決的碩士學位,目前在Plotly工作。

克里斯蒂安·梅耶(Christian Mayer)擁有計算機科學的博士學位,是受歡迎的Python網站Finxter.com的創始人,這是一個每年幫助超過三百萬人學習編程的教育平台。他出版了多本書籍,包括《Coffee Break Python》系列,並且是《Python One-Liners》(No Starch Press, 2020)的作者。

安·瑪麗·沃德(Ann Marie Ward)是Dash的貢獻者,也是Dash社區論壇的版主。安·瑪麗擁有經濟學學士學位,並且是一位退休的執行長。她在尋找更好的方式來分析財務數據時發現了Dash,對於使用Dash所能創造的可能性感到驚訝,因此開始學習Python、JavaScript和R。她對Dash的貢獻包括改善文檔、修復錯誤和添加功能。