Practical Deep Learning: A Python-Based Introduction
暫譯: 實用深度學習:基於Python的入門指南
Kneusel, Ron
- 出版商: No Starch Press
- 出版日期: 2021-02-23
- 定價: $2,030
- 售價: 9.5 折 $1,929
- 貴賓價: 9.0 折 $1,827
- 語言: 英文
- 頁數: 464
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1718500742
- ISBN-13: 9781718500747
-
相關分類:
Python、程式語言、DeepLearning
-
相關翻譯:
Python深度學習實戰 (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,300$1,235 -
$505Processing 編程學習指南(原書第2版)
-
$420$357 -
$520$260 -
$580$458 -
$1,730$1,644 -
$407Java 從入門到精通, 6/e
-
$4,200$3,990 -
$500$395 -
$2,384Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback)
-
$1,840AI and Machine Learning for On-Device Development: A Programmer's Guide
-
$1,900$1,805 -
$2,300$2,185 -
$1,200$948 -
$650$514 -
$539$512 -
$1,425$1,350 -
$1,200$948 -
$1,950$1,853 -
$780$616 -
$630$498 -
$2,100$1,995 -
$720$562 -
$520$411 -
$780$616
相關主題
商品描述
This book is for people with no experience with machine learning and who are looking for an intuition-based, hands-on introduction to deep learning using Python. Practical Deep Learning with Python is for complete beginners in machine learning. It introduces fundamental concepts such as classes and labels, building a dataset, and what a model is and does before presenting classic machine learning models, neural networks, and modern convolutional neural networks. Experiments in Python--working with leading open-source toolkits and standard datasets--give you hands-on experience with each model and help you build intuition about how to transfer the examples in the book to your own projects. You'll start with an introduction to the Python language and the NumPy extension that is ubiquitous in machine learning. Prominent toolkits, like sklearn and Keras/TensorFlow are used as the backbone to enable you to focus on the elements of machine learning without the burden of writing implementations from scratch. An entire chapter on evaluating the performance of models gives you the knowledge necessary to understand claims on performance and to know which models are working well and which are not. The book culminates by presenting convolutional neural networks as an introduction to modern deep learning. Understanding how these networks work and how they are affected by parameter choices leaves you with the core knowledge necessary to dive into the larger, ever-changing world of deep learning.
商品描述(中文翻譯)
本書適合對機器學習沒有經驗的人,並尋求基於直覺的、實作導向的深度學習入門,使用 Python 語言。
使用 Python 的實用深度學習 是針對機器學習的完全初學者。它介紹了基本概念,例如類別和標籤、建立數據集,以及模型的定義和功能,然後再介紹經典的機器學習模型、神經網絡和現代卷積神經網絡。在 Python 中進行實驗,使用領先的開源工具包和標準數據集,讓你獲得每個模型的實作經驗,並幫助你建立將書中範例轉移到自己專案的直覺。你將從 Python 語言和在機器學習中無處不在的 NumPy 擴展開始。像 sklearn 和 Keras/TensorFlow 這樣的知名工具包被用作基礎,讓你能專注於機器學習的要素,而不必承擔從零開始編寫實作的負擔。整整一章專門用於評估模型的性能,讓你掌握理解性能聲明所需的知識,並知道哪些模型運作良好,哪些則不然。本書的高潮是介紹卷積神經網絡,作為現代深度學習的入門。理解這些網絡的運作方式以及它們如何受到參數選擇的影響,讓你擁有深入探索不斷變化的深度學習世界所需的核心知識。作者簡介
Ron Kneusel has been working in the machine learning industry since 2003 and has been programming in Python since 2004. He received a PhD in Computer Science from UC Boulder in 2016 and is the author of two previous books: Numbers and Computers and Random Numbers and Computers.
作者簡介(中文翻譯)
Ron Kneusel 自 2003 年以來一直在機器學習產業工作,並自 2004 年開始使用 Python 進行程式設計。他於 2016 年在科羅拉多大學博爾德分校獲得計算機科學博士學位,並且是兩本先前書籍的作者:《Numbers and Computers》和《Random Numbers and Computers》。