Edge Intelligence in the Making Optimization, Deep Learning, and Applications
暫譯: 邊緣智能的形成

Sen Lin , Zhi Zhou , Zhaofeng Zhang , Xu Chen , Junshan Zhang

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-10-30
  • 售價: $3,530
  • 貴賓價: 9.5$3,354
  • 語言: 英文
  • 頁數: 233
  • 裝訂: Hardcover
  • ISBN: 1681739925
  • ISBN-13: 9781681739922
  • 海外代購書籍(需單獨結帳)

商品描述

With the explosive growth of mobile computing and Internet of Things (IoT) applications, as exemplified by AR/VR, smart city, and video/audio surveillance, billions of mobile and IoT devices are being connected to the Internet, generating zillions of bytes of data at the network edge. Driven by this trend, there is an urgent need to push the frontiers of artificial intelligence (AI) to the network edge to fully unleash the potential of IoT big data. Indeed, the marriage of edge computing and AI has resulted in innovative solutions, namely edge intelligence or edge AI. Nevertheless, research and practice on this emerging inter-disciplinary field is still in its infancy stage. To facilitate the dissemination of the recent advances in edge intelligence in both academia and industry, this book conducts a comprehensive and detailed survey of the recent research efforts and also showcases the authors' own research progress on edge intelligence. Specifically, the book first reviews the background and present motivation for AI running at the network edge. Next, it provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. Finally, it discusses the applications, marketplace, and future research opportunities of edge intelligence. This emerging interdisciplinary field offers many open problems and yet also tremendous opportunities, and this book only touches the tip of iceberg. Hopefully, this book will elicit escalating attention, stimulate fruitful discussions, and open new directions on edge intelligence.

商品描述(中文翻譯)

隨著行動計算和物聯網(IoT)應用的爆炸性增長,例如擴增實境(AR)/虛擬實境(VR)、智慧城市以及視訊/音訊監控,數十億的行動和物聯網設備正連接到互聯網,並在網路邊緣產生無數的數據。受到這一趨勢的驅動,迫切需要將人工智慧(AI)的前沿推向網路邊緣,以充分釋放物聯網大數據的潛力。事實上,邊緣計算與人工智慧的結合產生了創新的解決方案,即邊緣智能或邊緣AI。然而,這一新興的跨學科領域的研究和實踐仍處於初期階段。為了促進邊緣智能在學術界和產業界的最新進展的傳播,本書對近期的研究努力進行了全面而詳細的調查,並展示了作者在邊緣智能方面的研究進展。具體而言,本書首先回顧了在網路邊緣運行的人工智慧的背景和當前動機。接下來,提供了針對在網路邊緣進行訓練/推理的深度學習模型的整體架構、框架和新興關鍵技術的概述。為了說明邊緣智能的研究問題,本書還展示了作者在邊緣智能方面的四個研究項目,這些項目涵蓋了從嚴謹的理論分析到基於現實實施的研究。最後,討論了邊緣智能的應用、市場和未來的研究機會。這一新興的跨學科領域提供了許多未解決的問題,同時也帶來了巨大的機會,而本書僅觸及冰山一角。希望本書能引起日益增長的關注,激發富有成效的討論,並開啟邊緣智能的新方向。

作者簡介

Sen Lin, Arizona State University
Sen Lin received his B.Eng. degree in Electrical Engineering from Zhejiang University, Hangzhou, China, in 2013, and his M.S. degree in Telecommunications from The Hong Kong University of Science and Technology, Hong Kong, in 2014. Currently, he is pursuing a Ph.D. degree at the School of Electrical, Computer, and Energy Engineering at Arizona State University, Tempe, AZ, USA. His current research interests include statistical machine learning, reinforcement learning, and edge computing.

Zhi Zhou, Sun Yat-sen University
Zhi Zhou received B.S., M.E., and Ph.D. degrees in 2012, 2014, and 2017, respectively, all from the School of Computer Science and Technology at Huazhong University of Science and Technology (HUST), Wuhan, China. He is currently a research fellow in the School of Data and Computer Science at Sun Yat-sen University, Guangzhou, China. In 2016, he was a Visiting Scholar at University of Göttingen. He was nominated for the 2019 CCF Outstanding Doctoral Dissertation Award, the sole recipient of the 2018 ACM Wuhan & Hubei Computer Society Doctoral Dissertation Award, and a recipient of the Best Paper Award of IEEE UIC 2018. His research interests include edge computing, cloud computing, and distributed systems.

Zhaofeng Zhang, Arizona State University
Zhaofeng Zhang received his B.Eng. degree in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 2015, and his M.S. degree in Electrical Engineering from Arizona State University, Tempe, AZ, USA, in 2017. Currently, he is pursuing a Ph.D. degree at the School of Electrical, Computer, and Energy Engineering in Arizona State University, Tempe, AZ, USA. His current research interests include edge computing, statistical machine learning, and optimization.

Xu Chen, Sun Yat-sen University
Xu Chen received a Ph.D. degree in Information Engineering from the Chinese University of Hong Kong, in 2012. He is a Full Professor with Sun Yat-sen University, Guangzhou, China, and the Vice Director of the National and Local Joint Engineering Laboratory of Digital Home Interactive Applications. He was a Post-Doctoral Research Associate with Arizona State University, Tempe, USA, from 2012–2014, and a Humboldt Scholar Fellow with the Institute of Computer Science at the University of Göttingen, Germany, from 2014– 2016. He was a recipient of the Prestigious Humboldt Research Fellowship awarded by the Alexander von Humboldt Foundation of Germany, the 2014 Hong Kong Young Scientist Runner-Up Award, the 2017 IEEE Communication Society Asia–Pacific Outstanding Young Researcher Award, the 2017 IEEE ComSoc Young Professional Best Paper Award, the Honorable Mention Award at the 2010 IEEE international conference on Intelligence and Security Informatics, the Best Paper Runner-Up Award at the 2014 IEEE International Conference on Computer Communications (INFOCOM), and the Best Paper Award at the 2017 IEEE International Conference on Communications. He is currently an Area Editor at the IEEE Open Journal of the Communications Society, an Associate Editor of the IEEE Transactions Wireless Communications, IEEE Internet of Things Journal, and IEEE Journal on Selected Areas in Communications ( JSAC) Series on Network Softwarization and Enablers.

Junshan Zhang, Arizona State University
Junshan Zhang received his Ph.D. degree from the School of ECE at Purdue University, in 2000. He joined the School of ECEE at Arizona State University in August 2000 and has been Fulton Chair Professor there since 2015. His research interests fall in the general field of information networks and data science, including communication networks, edge computing and machine learning for IoT, mobile social networks, and smart grid. His current research focuses on fundamental problems in information networks and data science, including edge computing and machine learning in IoT and 5G, IoT data privacy/security, information theory, stochastic modeling, and control for smart grid. Prof. Zhang is a Fellow of the IEEE and a recipient of the ONR Young Investigator Award in 2005 and the NSF CAREER award in 2003. He received the IEEE Wireless Communication Technical Committee Recognition Award in 2016. His papers have won a few awards, including the Best Student Paper Award at WiOPT 2018, the Kenneth C. Sevcik Outstanding Student Paper Award at ACM SIGMETRICS/IFIP Performance 2016, the Best Paper Runner-up Award at IEEE INFOCOM 2009 and IEEE INFOCOM 2014, and the Best Paper Award at IEEE ICC 2008 and ICC 2017. Building on his research findings, he co-founded Smartiply Inc, a Fog Computing startup company delivering boosted network connectivity and embedded artificial intelligence. Prof. Zhang was TPC co-chair for a number of major conferences in communication networks, including IEEE INFOCOM 2012 and ACM MOBIHOC 2015. He was the general chair for ACM/IEEE SEC 2017, WiOPT 2016, and IEEE Communication Theory Workshop 2007. He was a Distinguished Lecturer of the IEEE Communications Society. He is currently serving as Editor-in-chief for IEEE Transactions on Wireless Communications and a senior editor for IEEE/ACM Transactions on Networking.

作者簡介(中文翻譯)

林森,亞利桑那州立大學

林森於2013年在中國杭州的浙江大學獲得電機工程學士學位,並於2014年在香港科技大學獲得電信碩士學位。目前,他正在美國亞利桑那州坦佩的亞利桑那州立大學電氣、計算機與能源工程學院攻讀博士學位。他目前的研究興趣包括統計機器學習、強化學習和邊緣計算。



周志,中山大學

周志於2012年、2014年和2017年分別在中國武漢的華中科技大學計算機科學與技術學院獲得學士、碩士和博士學位。他目前是中國廣州中山大學數據與計算機科學學院的研究員。2016年,他曾在哥廷根大學擔任訪問學者。他曾獲得2019年中國計算機學會(CCF)優秀博士論文獎提名,2018年ACM武漢與湖北計算機學會博士論文獎的唯一獲獎者,以及2018年IEEE UIC最佳論文獎。他的研究興趣包括邊緣計算、雲計算和分散式系統。



張兆峰,亞利桑那州立大學

張兆峰於2015年在中國武漢的華中科技大學獲得電機工程學士學位,並於2017年在美國亞利桑那州坦佩的亞利桑那州立大學獲得電機工程碩士學位。目前,他正在亞利桑那州立大學電氣、計算機與能源工程學院攻讀博士學位。他目前的研究興趣包括邊緣計算、統計機器學習和優化。



陳旭,中山大學

陳旭於2012年在香港中文大學獲得信息工程博士學位。他是中國廣州中山大學的全職教授,並擔任數位家庭互動應用國家與地方聯合工程實驗室的副主任。他於2012年至2014年在亞利桑那州立大學擔任博士後研究助理,並於2014年至2016年在德國哥廷根大學計算機科學研究所擔任洪堡學者。他曾獲得德國亞歷山大·馮·洪堡基金會頒發的洪堡研究獎學金、2014年香港青年科學家亞軍獎、2017年IEEE通信學會亞太區傑出青年研究者獎、2017年IEEE ComSoc青年專業最佳論文獎、2010年IEEE國際會議智能與安全信息學的榮譽提名獎、2014年IEEE國際計算機通信會議(INFOCOM)最佳論文亞軍獎,以及2017年IEEE國際通信會議最佳論文獎。他目前是IEEE通信學會開放期刊的區域編輯,IEEE無線通信期刊、IEEE物聯網期刊和IEEE選定通信領域期刊(JSAC)系列的副編輯。



張俊山,亞利桑那州立大學

張俊山於2000年在普渡大學的電氣與計算機工程學院獲得博士學位。他於2000年8月加入亞利桑那州立大學的電氣、計算機與能源工程學院,自2015年以來擔任富爾頓講座教授。他的研究興趣涵蓋信息網絡和數據科學的廣泛領域,包括通信網絡、邊緣計算和物聯網的機器學習、移動社交網絡和智能電網。他目前的研究專注於信息網絡和數據科學中的基本問題,包括物聯網和5G中的邊緣計算和機器學習、物聯網數據隱私/安全、信息理論、隨機建模和智能電網的控制。張教授是IEEE會士,並於2005年獲得ONR青年研究者獎和2003年NSF CAREER獎。他於2016年獲得IEEE無線通信技術委員會認可獎。他的論文曾獲得多項獎項,包括2018年WiOPT最佳學生論文獎、2016年ACM SIGMETRICS/IFIP Performance的Kenneth C. Sevcik傑出學生論文獎、2009年和2014年IEEE INFOCOM最佳論文亞軍獎,以及2008年和2017年IEEE ICC最佳論文獎。基於他的研究成果,他共同創立了Smartiply Inc,一家提供增強網絡連接和嵌入式人工智慧的邊緣計算初創公司。張教授曾擔任多個通信網絡主要會議的TPC共同主席,包括2012年IEEE INFOCOM和2015年ACM MOBIHOC。他曾擔任2017年ACM/IEEE SEC、2016年WiOPT和2007年IEEE通信理論研討會的總主席。他曾是IEEE通信學會的傑出講者。目前,他擔任IEEE無線通信期刊的主編和IEEE/ACM網絡期刊的高級編輯。

目錄大綱

Introduction to Edge Intelligence
Edge Intelligence via Model Training
Edge-Cloud Collaborative Learning via Distributionally Robust Optimization
Hierarchical Mobile-Edge-Cloud Model Training with Hybrid Parallelism
Edge Intelligence via Model Inference
On-Demand Accelerating Deep Neural Network Inference via Edge Computing
Applications, Marketplaces, and Future Directions of Edge Intelligence
Bibliography
Authors' Biographies.

目錄大綱(中文翻譯)

Introduction to Edge Intelligence

Edge Intelligence via Model Training

Edge-Cloud Collaborative Learning via Distributionally Robust Optimization

Hierarchical Mobile-Edge-Cloud Model Training with Hybrid Parallelism

Edge Intelligence via Model Inference

On-Demand Accelerating Deep Neural Network Inference via Edge Computing

Applications, Marketplaces, and Future Directions of Edge Intelligence

Bibliography

Authors' Biographies.