Cloud-Based RDF Data Management
暫譯: 雲端 RDF 數據管理

Kaoudi, Zoi, Manolescu, Ioana, Zampetakis, Stamatis

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-02-26
  • 售價: $2,240
  • 貴賓價: 9.5$2,128
  • 語言: 英文
  • 頁數: 103
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681737809
  • ISBN-13: 9781681737805
  • 海外代購書籍(需單獨結帳)

商品描述

Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs.

Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment.

In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.

商品描述(中文翻譯)

資源描述框架(Resource Description Framework,簡稱 RDF)旨在實現許多原始半結構化數據的承諾:靈活的結構、可選的模式,以及作為信息共享基礎的豐富且靈活的通用資源識別符(Universal Resource Identifiers)。此外,RDF 獨特地受益於科學社群在數據庫、知識表示和網絡技術方面的研究努力。因此,RDF 數據模型如今被廣泛應用於整合知識和信息的各種應用中:在開放網絡或政府數據中通過連結開放數據(Linked Open Data)倡議,在生物信息學等科學領域,以及最近在企業的搜索引擎和個人助理中以知識圖譜的形式出現。

管理如此大量的 RDF 數據具有挑戰性,因為 RDF 推理帶來的龐大規模、多樣性和複雜性。為了解決規模挑戰,需要分散式架構。雲計算是一種新興的範式,已在許多需要分散式架構的應用中廣泛採用,以提供可擴展性、容錯性和彈性等特性。與此同時,隨著 MapReduce 模型及其後續工作的出現,對大規模並行處理的興趣重新燃起,這些工作旨在簡化在雲環境中部署大規模並行數據管理任務的過程。

在本書中,我們研究了雲環境中最先進的 RDF 數據管理以及不一定為雲而設計的並行/分散式架構,但可以輕鬆地在其中部署。在提供有關 RDF 和雲技術的全面背景後,我們探討了在 RDF 數據管理系統中至關重要的四個方面:數據存儲、查詢處理、查詢優化和推理。我們以對開放問題和未來方向的討論作為本書的結尾。