Data-Based Methods for Materials Design and Discovery: Basic Ideas and General Methods
暫譯: 基於數據的材料設計與發現方法:基本概念與通用方法

Pilania, Ghanshyam, Balachandran, Prasanna V., Gubernatis, James E.

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-03-06
  • 售價: $2,900
  • 貴賓價: 9.5$2,755
  • 語言: 英文
  • 頁數: 188
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 168173737X
  • ISBN-13: 9781681737379
  • 海外代購書籍(需單獨結帳)

商品描述

Machine learning methods are changing the way we design and discover new materials. This book provides an overview of approaches successfully used in addressing materials problems (alloys, ferroelectrics, dielectrics) with a focus on probabilistic methods, such as Gaussian processes, to accurately estimate density functions. The authors, who have extensive experience in this interdisciplinary field, discuss generalizations where more than one competing material property is involved or data with differing degrees of precision/costs or fidelity/expense needs to be considered.

商品描述(中文翻譯)

機器學習方法正在改變我們設計和發現新材料的方式。本書提供了成功應用於解決材料問題(合金、鐵電材料、介電材料)的方法概述,重點介紹了概率方法,例如高斯過程,以準確估計密度函數。作者在這個跨學科領域擁有豐富的經驗,討論了涉及多個競爭材料性質的概括,或需要考慮具有不同精度/成本或保真度/開支的數據。