Probabilistic and Biologically Inspired Feature Representations (Synthesis Lectures on Computer Vision)
暫譯: 概率與生物啟發的特徵表示(計算機視覺綜合講座)

Michael Felsberg

  • 出版商: Morgan & Claypool
  • 出版日期: 2018-05-29
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 103
  • 裝訂: Hardcover
  • ISBN: 1681733668
  • ISBN-13: 9781681733661
  • 相關分類: Computer Vision
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife-they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.

商品描述(中文翻譯)

在標題「機率與生物啟發的特徵表示」下,本文彙集了大量有關通道表示的研究。通道表示是一種生物啟發的、類似小波的視覺特徵描述方法:它們是局部且緊湊的,形成了一個計算框架,並且所表示的信息可以被重建。第一個特性與許多基於直方圖和簽名的描述符共享,後一個特性則與相關的群體編碼概念相符。在其獨特的特性組合中,通道表示成為了一個視覺瑞士軍刀——它們可以用於圖像增強、視覺物體追蹤,作為2D和3D描述符,以及姿勢估計。在本文的各章中,將介紹通道表示的框架,詳細闡述其屬性,並提供對其機率建模和算法實現的進一步見解。通道表示是一個有用的工具箱,用於表示機器學習中的視覺信息,因為它們建立了一種通用的方法來計算流行的描述符,如HOG、SIFT和SHOT。即使在深度學習的時代,它們也提供了手工設計的描述符與深度網絡層中所見的先驗無結構特徵空間之間的良好折衷。

最後瀏覽商品 (20)