Sensor Analysis for the Internet of Things
暫譯: 物聯網的感測器分析
Michael Stanley, Jongmin Lee
- 出版商: Morgan & Claypool
- 出版日期: 2018-02-05
- 售價: $2,870
- 貴賓價: 9.5 折 $2,727
- 語言: 英文
- 頁數: 138
- 裝訂: Hardcover
- ISBN: 1681732890
- ISBN-13: 9781681732893
-
相關分類:
感測器 Sensor、物聯網 IoT
海外代購書籍(需單獨結帳)
相關主題
商品描述
While it may be attractive to view sensors as simple transducers which convert physical quantities into electrical signals, the truth of the matter is more complex. The engineer should have a proper understanding of the physics involved in the conversion process, including interactions with other measurable quantities. A deep understanding of these interactions can be leveraged to apply sensor fusion techniques to minimize noise and/or extract additional information from sensor signals.
Advances in microcontroller and MEMS manufacturing, along with improved internet connectivity, have enabled cost-effective wearable and Internet of Things sensor applications. At the same time, machine learning techniques have gone mainstream, so that those same applications can now be more intelligent than ever before. This book explores these topics in the context of a small set of sensor types.
We provide some basic understanding of sensor operation for accelerometers, magnetometers, gyroscopes, and pressure sensors. We show how information from these can be fused to provide estimates of orientation. Then we explore the topics of machine learning and sensor data analytics.
商品描述(中文翻譯)
雖然將感測器視為將物理量轉換為電信號的簡單轉換器可能很有吸引力,但事實上情況更為複雜。工程師應該對轉換過程中涉及的物理學有正確的理解,包括與其他可測量量的相互作用。對這些相互作用的深入理解可以用來應用感測器融合技術,以最小化噪聲和/或從感測器信號中提取額外信息。
微控制器和微機電系統(MEMS)製造的進步,加上改善的網路連接,使得成本效益高的可穿戴設備和物聯網感測器應用成為可能。與此同時,機器學習技術已經進入主流,因此這些應用現在可以比以往更智能。本書在一小組感測器類型的背景下探討這些主題。
我們提供對加速度計、磁力計、陀螺儀和壓力感測器操作的一些基本理解。我們展示了如何融合這些信息以提供方向的估算。然後我們探討機器學習和感測器數據分析的主題。