Anomaly Detection As a Service: Challenges, Advances, and Opportunities (Synthesis Lectures on Information Security, Privacy, and Trust)
暫譯: 異常偵測即服務:挑戰、進展與機會(資訊安全、隱私與信任綜合講座)
Danfeng Yao, Xiaokui Shu, Long Cheng, Salvatore J. Stolfo
- 出版商: Morgan & Claypool
- 出版日期: 2017-10-24
- 售價: $3,180
- 貴賓價: 9.5 折 $3,021
- 語言: 英文
- 頁數: 173
- 裝訂: Hardcover
- ISBN: 1681732424
- ISBN-13: 9781681732428
-
相關分類:
資訊安全
海外代購書籍(需單獨結帳)
相關主題
商品描述
Anomaly detection has been a long-standing security approach with versatile applications, ranging from securing server programs in critical environments, to detecting insider threats in enterprises, to anti-abuse detection for online social networks. Despite the seemingly diverse application domains, anomaly detection solutions share similar technical challenges, such as how to accurately recognize various normal patterns, how to reduce false alarms, how to adapt to concept drifts, and how to minimize performance impact. They also share similar detection approaches and evaluation methods, such as feature extraction, dimension reduction, and experimental evaluation.
The main purpose of this book is to help advance the real-world adoption and deployment anomaly detection technologies, by systematizing the body of existing knowledge on anomaly detection. This book is focused on data-driven anomaly detection for software, systems, and networks against advanced exploits and attacks, but also touches on a number of applications, including fraud detection and insider threats. We explain the key technical components in anomaly detection workflows, give in-depth description of the state-of-the-art data-driven anomaly-based security solutions, and more importantly, point out promising new research directions. This book emphasizes on the need and challenges for deploying service-oriented anomaly detection in practice, where clients can outsource the detection to dedicated security providers and enjoy the protection without tending to the intricate details.
商品描述(中文翻譯)
異常檢測一直是長期以來的安全方法,具有多樣化的應用,範圍從保護關鍵環境中的伺服器程式,到檢測企業內部威脅,再到在線社交網絡的反濫用檢測。儘管應用領域看似多樣,異常檢測解決方案卻面臨相似的技術挑戰,例如如何準確識別各種正常模式、如何減少誤報、如何適應概念漂移,以及如何最小化性能影響。它們還共享相似的檢測方法和評估方法,例如特徵提取、降維和實驗評估。
本書的主要目的是幫助推進異常檢測技術在現實世界中的採用和部署,通過系統化現有的異常檢測知識體系。本書專注於針對高級利用和攻擊的軟體、系統和網絡的數據驅動異常檢測,但也涉及多個應用,包括詐騙檢測和內部威脅。我們解釋了異常檢測工作流程中的關鍵技術組件,深入描述了最先進的基於數據的異常安全解決方案,更重要的是,指出了有前景的新研究方向。本書強調在實踐中部署面向服務的異常檢測的需求和挑戰,客戶可以將檢測外包給專門的安全提供者,享受保護而無需處理複雜的細節。