Genetic Algorithms and Machine Learning for Programmers: Create AI Models and Evolve Solutions
暫譯: 遺傳演算法與程式設計師的機器學習:創建 AI 模型與演化解決方案

Frances Buontempo

買這商品的人也買了...

相關主題

商品描述

Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you.

Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems.

In this book, you will:

  • Use heuristics and design fitness functions.
  • Build genetic algorithms.
  • Make nature-inspired swarms with ants, bees and particles.
  • Create Monte Carlo simulations.
  • Investigate cellular automata.
  • Find minima and maxima, using hill climbing and simulated annealing.
  • Try selection methods, including tournament and roulette wheels.
  • Learn about heuristics, fitness functions, metrics, and clusters.

Test your code and get inspired to try new problems. Work through scenarios to code your way out of a paper bag; an important skill for any competent programmer. See how the algorithms explore and learn by creating visualizations of each problem. Get inspired to design your own machine learning projects and become familiar with the jargon.

What You Need:

Code in C++ (>= C++11), Python (2.x or 3.x) and JavaScript (using the HTML5 canvas). Also uses matplotlib and some open source libraries, including SFML, Catch and Cosmic-Ray. These plotting and testing libraries are not required but their use will give you a fuller experience. Armed with just a text editor and compiler/interpreter for your language of choice you can still code along from the general algorithm descriptions.

商品描述(中文翻譯)

自駕車、自然語言識別和線上推薦引擎的實現都得益於機器學習。現在,您可以創建自己的遺傳算法、自然啟發的群體、蒙地卡羅模擬、細胞自動機和聚類。學習如何測試您的機器學習代碼,並深入探討更高級的主題。如果您是一位希望了解機器學習的初學者或中級程式設計師,這本書適合您。

透過一系列獨立的食譜來發現機器學習算法。建立一套算法庫,發現普遍適用的術語和方法。將智慧融入您的算法,指導它們找到問題的良好解決方案。

在本書中,您將:
- 使用啟發式方法和設計適應度函數。
- 建立遺傳算法。
- 創建以螞蟻、蜜蜂和粒子為靈感的自然啟發群體。
- 創建蒙地卡羅模擬。
- 研究細胞自動機。
- 使用爬山演算法和模擬退火法尋找最小值和最大值。
- 嘗試選擇方法,包括錦標賽和輪盤。
- 了解啟發式方法、適應度函數、度量和聚類。

測試您的代碼,並獲得靈感去嘗試新問題。通過情境練習,學會如何從困境中脫身;這是任何合格程式設計師的重要技能。觀察算法如何探索和學習,並為每個問題創建可視化。獲得靈感設計自己的機器學習項目,並熟悉相關術語。

您需要的:
使用 C++ (>= C++11)、Python (2.x 或 3.x) 和 JavaScript (使用 HTML5 canvas) 進行編碼。還使用 matplotlib 和一些開源庫,包括 SFML、Catch 和 Cosmic-Ray。這些繪圖和測試庫不是必需的,但使用它們將使您的體驗更加豐富。只需一個文本編輯器和您選擇的語言的編譯器/解釋器,您仍然可以根據一般算法描述進行編碼。