Complex Network Analysis in Python: Recognize - Construct - Visualize - Analyze - Interpret (Paperback)
暫譯: Python中的複雜網絡分析:識別 - 構建 - 可視化 - 分析 - 解釋 (平裝本)

Dmitry Zinoviev

  • 出版商: Pragmatic Bookshelf
  • 出版日期: 2018-02-27
  • 售價: $1,260
  • 貴賓價: 9.5$1,197
  • 語言: 英文
  • 頁數: 262
  • 裝訂: Paperback
  • ISBN: 1680502697
  • ISBN-13: 9781680502695
  • 相關分類: Python程式語言
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially.

Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience.

Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics.

Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer.

What You Need:

You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

商品描述(中文翻譯)

建構、分析和視覺化網絡,使用 networkx 這個 Python 語言模組。網絡分析是一個強大的工具,可以應用於多種數據集和情境。探索如何處理各種網絡,包括社交網絡、產品網絡、時間網絡、空間網絡和語義網絡。將幾乎任何現實世界的數據轉換為複雜網絡,例如關於共同使用化妝品的推薦、模糊的對沖基金關聯和線上友誼。分析和視覺化網絡,並根據您的分析做出商業決策。如果您是一位好奇的 Python 程式設計師、一位數據科學家,或是一位對自動化日常任務感興趣的 CNA 專家,您將大幅提高生產力。

複雜網絡分析過去是手動進行或使用不可編程的網絡分析工具,但現在不再如此!您現在可以在 Python 中自動化和編程這些任務。複雜網絡是相互連接的項目、單詞、概念或人員的集合。通過探索它們的結構和個別元素,我們可以了解它們的意義、演變和韌性。

從簡單網絡開始,將現實生活和合成的網絡圖轉換為 networkx 數據結構。查看更複雜的網絡,學習更強大的工具來處理中心性計算、區塊建模以及團體和社區檢測。熟悉可編程和互動的高品質網絡視覺化工具,例如 Gephi,一個 CNA 探索器。將案例研究中的模式應用到您的問題上。使用 NetworKit,這是一個高效能的 networkx 替代品,探索大型網絡。本書的每一部分都提供了一類網絡的概述,包括對 networkx 函數和技術的實用研究,並以來自社交網絡、人類學、市場營銷和體育分析等各個領域的案例研究作結。

結合您的 CNA 和 Python 編程技能,成為更好的網絡分析師、更出色的數據科學家和更全能的程式設計師。

您需要的條件:

您需要安裝 Python 3.x,並附加以下模組:Pandas (>=0.18)、NumPy (>=1.10)、matplotlib (>=1.5)、networkx (>=1.11)、python-louvain (>=0.5)、NetworKit (>=3.6) 和 generalizedsimilarity。我們建議使用 Anaconda 發行版,該發行版包含所有這些模組(除了 python-louvain、NetworKit 和 generalizedsimilarity),並且可以在所有主要的現代操作系統上運行。