Knowledge Graphs
暫譯: 知識圖譜

Hogan, Aidan, Blomqvist, Eva, Cochez, Michael

  • 出版商: Morgan & Claypool
  • 出版日期: 2021-11-08
  • 售價: $3,530
  • 貴賓價: 9.5$3,354
  • 語言: 英文
  • 頁數: 257
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1636392377
  • ISBN-13: 9781636392370
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale.

The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques--based on statistics, graph analytics, machine learning, etc.--can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve.

This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.

商品描述(中文翻譯)

這本書提供了一個全面且易於理解的知識圖譜介紹,最近在產業和學術界都引起了顯著的關注。知識圖譜的基礎原則是將基於圖的抽象應用於數據,並且現在廣泛應用於需要整合和從多個多樣化數據來源中提取價值的大規模場景中。

本書定義了知識圖譜,並提供了它們使用方式的高層次概述。它呈現並對比了常用的圖模型,這些模型通常用於將數據表示為圖形,以及可以用來查詢這些圖的語言,然後描述如何利用模式、身份和上下文的概念來增強所得到的數據圖。本書討論了本體和規則如何用來編碼知識,以及基於統計、圖分析、機器學習等的歸納技術如何用來編碼和提取知識。它涵蓋了知識圖譜的創建、豐富、評估和精煉技術,並調查了最近的開放和企業知識圖譜,以及它們被最廣泛採用的行業或應用。本書最後討論了知識圖譜當前的限制和未來可能演變的方向。

本書的目標讀者是希望了解更多關於知識圖譜及其如何促進從多樣化數據中提取價值的大規模學生、研究人員和實踐者。為了使本書對新手更易於理解,書中貫穿使用了運行示例和圖形符號。對於那些選擇深入特定主題的人,書中也提供了正式定義和廣泛的參考資料。