Transfer Learning for Multiagent Reinforcement Learning Systems
暫譯: 多智能體強化學習系統的遷移學習

Da Silva, Felipe Leno, Reali Costa, Anna Helena

  • 出版商: Morgan & Claypool
  • 出版日期: 2021-05-27
  • 售價: $1,930
  • 貴賓價: 9.5$1,834
  • 語言: 英文
  • 頁數: 130
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1636391346
  • ISBN-13: 9781636391342
  • 相關分類: ReinforcementDeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.

However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.

This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.

This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.

商品描述(中文翻譯)

學習解決序列決策任務是困難的。人類需要多年時間以隨機的方式探索環境,直到他們能夠推理、解決困難的任務,並與其他人類合作以達成共同目標。在這方面,人工智慧代理與人類相似。強化學習(Reinforcement Learning, RL)是一種通過與環境互動來訓練自主代理的知名技術。不幸的是,學習過程具有高樣本複雜度,以推斷有效的執行策略,特別是在多個代理同時在環境中執行時。

然而,可以利用先前的知識來加速學習並解決更困難的任務。人類以相似的方式建立技能並通過關聯不同的任務來重用它們,RL 代理也可能重用來自先前解決的任務的知識,以及與環境中其他代理的知識交流。事實上,目前幾乎所有由 RL 解決的最具挑戰性的任務都依賴於嵌入式知識重用技術,例如模仿學習(Imitation Learning)、示範學習(Learning from Demonstration)和課程學習(Curriculum Learning)。

本書調查了多代理強化學習中知識重用的文獻。作者定義了一個統一的分類法,涵蓋了最先進的知識重用解決方案,並提供了對該領域近期進展的全面討論。在本書中,讀者將找到關於在多代理序列決策任務中知識重用的多種方式的全面討論,以及每種方法在何種情境下更有效。作者還提供了他們對該領域當前低懸果實發展的看法,以及仍然存在的重大問題,這些問題可能導致突破性的發展。最後,本書為打算加入該領域或利用這些技術的研究人員提供了資源,包括會議、期刊和實作工具的列表。

本書將對廣泛的讀者群有用;並希望促進社群之間的新對話和該領域的新發展。