Embeddings in Natural Language Processing: Theory and Advances in Vector Representations of Meaning
暫譯: 自然語言處理中的嵌入技術:意義向量表示的理論與進展

Pilehvar, Mohammad Taher, Camacho-Collados, Jose

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-11-13
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 176
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1636390218
  • ISBN-13: 9781636390215
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents.

This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP.

Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.

商品描述(中文翻譯)

**嵌入技術無疑是自然語言處理(NLP)中最具影響力的研究領域之一。** 將信息編碼為低維向量表示,這種表示方式可以輕鬆整合到現代機器學習模型中,對於NLP的發展起到了核心作用。嵌入技術最初專注於單詞,但注意力很快開始轉向其他形式:從圖結構(如知識庫)到其他類型的文本內容(如句子和文檔)。

本書提供了NLP中主要嵌入技術的高層次綜述,廣義上來說。本書首先解釋了傳統的詞向量空間模型和詞嵌入(例如,Word2Vec和GloVe),然後轉向其他類型的嵌入,如詞義、句子和文檔嵌入,以及圖嵌入。本書還概述了上下文表示的最新發展(例如,ELMo和BERT),並解釋了它們在NLP中的潛力。

在整本書中,讀者可以找到從零開始理解某個主題所需的基本信息,以及文獻中發展出來的最成功技術的廣泛概述。

最後瀏覽商品 (20)