Data Model Scorecard: Applying the Industry Standard on Data Model Quality
暫譯: 數據模型評分卡:應用行業標準於數據模型質量
Hoberman, Steve
- 出版商: Technics Publication
- 出版日期: 2015-09-15
- 售價: $1,930
- 貴賓價: 9.5 折 $1,834
- 語言: 英文
- 頁數: 202
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1634620828
- ISBN-13: 9781634620826
-
相關翻譯:
數據模型記分卡 (簡中版)
相關主題
商品描述
Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it's essential to get the data model right. But how do you determine right? That's where the Data Model Scorecard(R) comes in.
The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization's data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client's data models - I will show you how to apply the Scorecard in this book.
This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections:
In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3.
In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category:
- Chapter 4: Correctness
- Chapter 5: Completeness
- Chapter 6: Scheme
- Chapter 7: Structure
- Chapter 8: Abstraction
- Chapter 9: Standards
- Chapter 10: Readability
- Chapter 11: Definitions
- Chapter 12: Consistency
- Chapter 13: Data
In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).
商品描述(中文翻譯)
資料模型是用來從業務到資訊科技(IT)之間,以及在資訊科技內部從分析師、建模者和架構師到資料庫設計師和開發人員之間溝通資料需求的主要媒介。因此,正確建立資料模型至關重要。但你如何判斷什麼是正確的呢?這就是資料模型評分卡(R)的用武之地。
資料模型評分卡是一種資料模型質量評分工具,包含十個類別,旨在提高你組織的資料模型質量。我許多顧問任務都專注於將資料模型評分卡應用於客戶的資料模型——在本書中,我將向你展示如何應用這個評分卡。
本書是為那些建立、使用或審查資料模型的人所寫,包含資料模型評分卡模板及其解釋,並附有每個評分卡類別的多個範例。全書分為三個部分:
在第一部分資料建模與驗證的必要性中,第一章提供一個簡短的資料建模入門,第二章解釋為何正確建立資料模型是重要的,第三章介紹資料模型評分卡。
在第二部分資料模型評分卡類別中,我們將解釋資料模型評分卡的十個類別。這一部分有十章,每一章專注於一個特定的評分卡類別:
- 第四章:正確性
- 第五章:完整性
- 第六章:方案
- 第七章:結構
- 第八章:抽象
- 第九章:標準
- 第十章:可讀性
- 第十一章:定義
- 第十二章:一致性
- 第十三章:資料
在第三部分驗證資料模型中,我們將準備模型審查(第十四章),提供幫助模型審查的提示(第十五章),然後根據實際專案審查一個資料模型(第十六章)。