Statistics Slam Dunk: Statistical Analysis with R on Real NBA Data
暫譯: 統計灌籃:使用 R 進行真實 NBA 數據的統計分析

Sutton, Gary

  • 出版商: Manning
  • 出版日期: 2024-02-06
  • 售價: $2,140
  • 貴賓價: 9.5$2,033
  • 語言: 英文
  • 頁數: 672
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1633438686
  • ISBN-13: 9781633438682
  • 相關分類: R 語言機率統計學 Probability-and-statistics
  • 立即出貨 (庫存 < 4)

相關主題

商品描述

Learn statistics by analyzing professional basketball data! In this action-packed book, you'll build your skills in exploratory data analysis by digging into the fascinating world of NBA games and player stats using the R language.

Statistics Slam Dunk is an engaging how-to guide for statistical analysis with R. Each chapter contains an end-to-end data science or statistics project delving into NBA data and revealing real-world sporting insights. Written by a former basketball player turned business intelligence and analytics leader, you'll get practical experience tidying, wrangling, exploring, testing, modeling, and otherwise analyzing data with the best and latest R packages and functions.

In Statistics Slam Dunk you'll develop a toolbox of R programming skills including:

 

  • Reading and writing data
  • Installing and loading packages
  • Transforming, tidying, and wrangling data
  • Applying best-in-class exploratory data analysis techniques
  • Creating compelling visualizations
  • Developing supervised and unsupervised machine learning algorithms
  • Executing hypothesis tests, including t-tests and chi-square tests for independence
  • Computing expected values, Gini coefficients, z-scores, and other measures


If you're looking to switch to R from another language, or trade base R for tidyverse functions, this book is the perfect training coach. Much more than a beginner's guide, it teaches statistics and data science methods that have tons of use cases. And just like in the real world, you'll get no clean pre-packaged data sets in Statistics Slam Dunk. You'll take on the challenge of wrangling messy data to drill on the skills that will make you the star player on any data team.

Foreword by Thomas W. Miller.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology

Statistics Slam Dunk is a data science manual with a difference. Each chapter is a complete, self-contained statistics or data science project for you to work through--from importing data, to wrangling it, testing it, visualizing it, and modeling it. Throughout the book, you'll work exclusively with NBA data sets and the R language, applying best-in-class statistics techniques to reveal fun and fascinating truths about the NBA.

About the book

Is losing basketball games on purpose a rational strategy? Which hustle statistics have an impact on wins and losses? Does spending more on player salaries translate into a winning record? You'll answer all these questions and more. Plus, R's visualization capabilities shine through in the book's 300 plots and charts, including Pareto charts, Sankey diagrams, Cleveland dot plots, and dendrograms.

What's inside

 

  • Transforming, tidying, and wrangling data
  • Applying best-in-class exploratory data analysis techniques
  • Developing supervised and unsupervised machine learning algorithms
  • Executing hypothesis tests and effect size tests


About the reader

For readers who know basic statistics. No advanced knowledge of R--or basketball--required.

About the author

Gary Sutton is a former basketball player who has built and led high-performing business intelligence and analytics organizations across multiple verticals.

Table of Contents

1 Getting started
2 Exploring data
3 Segmentation analysis
4 Constrained optimization
5 Regression models
6 More wrangling and visualizing data
7 T-testing and effect size testing
8 Optimal stopping
9 Chi-square testing and more effect size testing
10 Doing more with ggplot2
11 K-means clustering
12 Computing and plotting inequality
13 More with Gini coefficients and Lorenz curves
14 Intermediate and advanced modeling
15 The Lindy effect
16 Randomness versus causality
17 Collective intelligence

商品描述(中文翻譯)

學習統計學,透過分析職業籃球數據!在這本充滿動作的書中,您將透過使用 R 語言深入探索 NBA 比賽和球員統計的迷人世界,來提升您的探索性數據分析技能。

《統計學灌籃》是一本引人入勝的 R 語言統計分析指南。每一章都包含一個完整的數據科學或統計專案,深入探討 NBA 數據並揭示現實世界的體育見解。這本書的作者是一位曾經的籃球運動員,後來成為商業智慧和分析領域的領導者,您將獲得實際經驗,學習如何整理、處理、探索、測試、建模以及使用最新的 R 套件和函數分析數據。

在《統計學灌籃》中,您將發展一套 R 程式設計技能工具箱,包括:

- 讀取和寫入數據
- 安裝和加載套件
- 轉換、整理和處理數據
- 應用最佳的探索性數據分析技術
- 創建引人注目的可視化
- 開發監督式和非監督式機器學習算法
- 執行假設檢定,包括 t 檢定和卡方獨立性檢定
- 計算期望值、基尼係數、z 分數及其他指標

如果您打算從其他語言轉換到 R,或用 tidyverse 函數取代基本的 R,這本書是完美的訓練教練。這不僅僅是一本初學者指南,它教授的統計和數據科學方法有著大量的應用案例。而且,就像在現實世界中一樣,《統計學灌籃》中不會有乾淨的預包裝數據集。您將面對處理雜亂數據的挑戰,以磨練使您成為任何數據團隊明星球員的技能。

前言由 Thomas W. Miller 撰寫。

購買印刷版書籍可獲得 Manning Publications 提供的免費 PDF、Kindle 和 ePub 格式電子書。

關於技術

《統計學灌籃》是一本與眾不同的數據科學手冊。每一章都是一個完整、自足的統計或數據科學專案,讓您從導入數據、處理數據、測試數據、可視化數據到建模數據。整本書中,您將專注於 NBA 數據集和 R 語言,應用最佳的統計技術來揭示有趣且迷人的 NBA 真相。

關於這本書

故意輸掉籃球比賽是一種理性的策略嗎?哪些努力統計對勝負有影響?在球員薪資上花費更多是否能轉化為贏得比賽的紀錄?您將回答這些問題及更多。此外,R 的可視化能力在書中的 300 個圖表中大放異彩,包括帕累托圖、桑基圖、克里夫蘭點圖和樹狀圖。

內容概覽

- 轉換、整理和處理數據
- 應用最佳的探索性數據分析技術
- 開發監督式和非監督式機器學習算法
- 執行假設檢定和效應大小檢定

關於讀者

適合了解基本統計的讀者。不需要高級的 R 知識或籃球知識。

關於作者

Gary Sutton 是一位前籃球運動員,曾在多個行業建立並領導高效能的商業智慧和分析組織。

目錄

1 開始使用
2 探索數據
3 分群分析
4 約束優化
5 迴歸模型
6 更多數據處理和可視化
7 t 檢定和效應大小檢定
8 最佳停止
9 卡方檢定及更多效應大小檢定
10 使用 ggplot2 做更多
11 K-means 聚類
12 計算和繪製不平等
13 更多基尼係數和洛倫茲曲線
14 中級和高級建模
15 林迪效應
16 隨機性與因果性
17 集體智慧

作者簡介

Gary Sutton is a vice president for a leading financial services company. He has built and led high-performing business intelligence and analytics organizations across multiple verticals, where R was the preferred programming language for predictive modelling, statistical analyses, and other quantitative insights. Gary earned his Undergraduate Degree from the University of Southern California, a Masters from George Washington University, and a second Masters in Data Science, from Northwestern University.

作者簡介(中文翻譯)

Gary Sutton 是一家領先的金融服務公司的副總裁。他在多個行業中建立並領導了高效能的商業智慧和分析組織,其中 R 是預測建模、統計分析和其他定量洞察的首選程式語言。Gary 在南加州大學獲得了本科學位,並在喬治華盛頓大學獲得碩士學位,隨後又在西北大學獲得數據科學的第二個碩士學位。