Game Theory for Data Science: Eliciting Truthful Information
暫譯: 數據科學中的博弈論:引導真實資訊的獲取
Faltings, Boi, Radanovic, Goran, Brachman, Ronald
- 出版商: Morgan & Claypool
- 出版日期: 2017-09-19
- 售價: $2,410
- 貴賓價: 9.5 折 $2,290
- 語言: 英文
- 頁數: 151
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1627057293
- ISBN-13: 9781627057295
-
相關分類:
Data Science
-
相關翻譯:
數據科學博弈論 (Game Theory for Data Science: Eliciting Truthful Information) (簡中版)
相關主題
商品描述
Intelligent systems often depend on data provided by information agents, for example, sensor data or crowdsourced human computation. Providing accurate and relevant data requires costly effort that agents may not always be willing to provide. Thus, it becomes important not only to verify the correctness of data, but also to provide incentives so that agents that provide high-quality data are rewarded while those that do not are discouraged by low rewards.
We cover different settings and the assumptions they admit, including sensing, human computation, peer grading, reviews, and predictions. We survey different incentive mechanisms, including proper scoring rules, prediction markets and peer prediction, Bayesian Truth Serum, Peer Truth Serum, Correlated Agreement, and the settings where each of them would be suitable. As an alternative, we also consider reputation mechanisms. We complement the game-theoretic analysis with practical examples of applications in prediction platforms, community sensing, and peer grading.
商品描述(中文翻譯)
智能系統通常依賴資訊代理提供的數據,例如感測器數據或群眾外包的人類計算。提供準確且相關的數據需要耗費高昂的努力,而代理不一定總是願意提供。因此,驗證數據的正確性變得重要,同時提供激勵措施,以便提供高品質數據的代理能夠獲得獎勵,而那些不提供的則因獎勵低而受到抑制。
我們涵蓋了不同的情境及其所接受的假設,包括感測、人類計算、同儕評分、評論和預測。我們調查了不同的激勵機制,包括適當的評分規則、預測市場和同儕預測、貝葉斯真相血清(Bayesian Truth Serum)、同儕真相血清(Peer Truth Serum)、相關一致性(Correlated Agreement),以及每種機制適用的情境。作為替代方案,我們也考慮了聲譽機制。我們用實際的應用範例來補充博弈論分析,這些範例來自預測平台、社區感測和同儕評分。