Semantic Breakthrough in Drug Discovery (Synthesis Lectures on the Semantic Web: Theory and Technology)
暫譯: 藥物發現中的語意突破(語意網:理論與技術的合成講座)
Bin Chen, Huijun Wang, Ying Ding, David Wild
- 出版商: Morgan & Claypool
- 出版日期: 2014-10-01
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 142
- 裝訂: Paperback
- ISBN: 1627054502
- ISBN-13: 9781627054508
海外代購書籍(需單獨結帳)
相關主題
商品描述
The current drug development paradigm---sometimes expressed as, ``One disease, one target, one drug''---is under question, as relatively few drugs have reached the market in the last two decades. Meanwhile, the research focus of drug discovery is being placed on the study of drug action on biological systems as a whole, rather than on individual components of such systems. The vast amount of biological information about genes and proteins and their modulation by small molecules is pushing drug discovery to its next critical steps, involving the integration of chemical knowledge with these biological databases. Systematic integration of these heterogeneous datasets and the provision of algorithms to mine the integrated datasets would enable investigation of the complex mechanisms of drug action; however, traditional approaches face challenges in the representation and integration of multi-scale datasets, and in the discovery of underlying knowledge in the integrated datasets. The Semantic Web, envisioned to enable machines to understand and respond to complex human requests and to retrieve relevant, yet distributed, data, has the potential to trigger system-level chemical-biological innovations. Chem2Bio2RDF is presented as an example of utilizing Semantic Web technologies to enable intelligent analyses for drug discovery.
Table of Contents: Introduction / Data Representation and Integration Using RDF / Data Representation and Integration Using OWL / Finding Complex Biological Relationships in PubMed Articles using Bio-LDA / Integrated Semantic Approach for Systems Chemical Biology Knowledge Discovery / Semantic Link Association Prediction / Conclusions / References / Authors' Biographies
商品描述(中文翻譯)
目前的藥物開發範式——有時表達為「一種疾病、一個靶點、一種藥物」——正受到質疑,因為在過去二十年中,上市的藥物相對較少。與此同時,藥物發現的研究重點正轉向對藥物在整體生物系統中的作用進行研究,而不是僅僅針對這些系統的個別組件。關於基因和蛋白質的龐大生物信息,以及小分子對其調節的研究,正在推動藥物發現邁向下一個關鍵步驟,這涉及將化學知識與這些生物數據庫進行整合。系統性整合這些異質數據集並提供算法以挖掘整合後的數據集,將使得研究藥物作用的複雜機制成為可能;然而,傳統方法在多尺度數據集的表示和整合,以及在整合數據集中發現潛在知識方面面臨挑戰。語義網(Semantic Web)旨在使機器能夠理解和響應複雜的人類請求,並檢索相關但分散的數據,具有觸發系統級化學-生物創新的潛力。Chem2Bio2RDF被提出作為利用語義網技術來實現藥物發現智能分析的範例。
目錄:介紹 / 使用RDF的數據表示與整合 / 使用OWL的數據表示與整合 / 使用Bio-LDA在PubMed文章中尋找複雜的生物關係 / 系統化化學生物學知識發現的整合語義方法 / 語義鏈接關聯預測 / 結論 / 參考文獻 / 作者簡介