Contextual Analysis of Videos (Synthesis Lectures on Image, Video and Multimedia Processing)
暫譯: 視頻的情境分析(影像、視頻與多媒體處理綜合講座)

Myo Thida, How-lung Eng, Dorothy Monekosso, Paolo Remagnino

  • 出版商: Morgan & Claypool
  • 出版日期: 2013-08-01
  • 售價: $1,620
  • 貴賓價: 9.5$1,539
  • 語言: 英文
  • 頁數: 102
  • 裝訂: Paperback
  • ISBN: 162705166X
  • ISBN-13: 9781627051668
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Video context analysis is an active and vibrant research area, which provides means for extracting, analyzing and understanding behavior of a single target and multiple targets. Over the last few decades, computer vision researchers have been working to improve the accuracy and robustness of algorithms to analyse the context of a video automatically. In general, the research work in this area can be categorized into three major topics: 1) counting number of people in the scene 2) tracking individuals in a crowd and 3) understanding behavior of a single target or multiple targets in the scene. This book focusses on tracking individual targets and detecting abnormal behavior of a crowd in a complex scene. Firstly, this book surveys the state-of-the-art methods for tracking multiple targets in a complex scene and describes the authors' approach for tracking multiple targets. The proposed approach is to formulate the problem of multi-target tracking as an optimization problem of finding dynamic optima (pedestrians) where these optima interact frequently. A novel particle swarm optimization (PSO) algorithm that uses a set of multiple swarms is presented. Through particles and swarms diversification, motion prediction is introduced into the standard PSO, constraining swarm members to the most likely region in the search space. The social interaction among swarm and the output from pedestrians-detector are also incorporated into the velocity-updating equation. This allows the proposed approach to track multiple targets in a crowded scene with severe occlusion and heavy interactions among targets.

The second part of this book discusses the problem of detecting and localising abnormal activities in crowded scenes. We present a spatio-temporal Laplacian Eigenmap method for extracting different crowd activities from videos. This method learns the spatial and temporal variations of local motions in an embedded space and employs representatives of different activities to construct the model which characterises the regular behavior of a crowd. This model of regular crowd behavior allows for the detection of abnormal crowd activities both in local and global context and the localization of regions which show abnormal behavior.

The last chapter suggests a number of research directions to be pursued for future work.

Table of Contents: Introduction / Literature Review / Tracking Multiple Targets Using Particle Swarm Optimization / Abnormality Detection in Crowded Scenes / Conclusion / Bibliography / Authors' Biographies

商品描述(中文翻譯)

視頻上下文分析是一個活躍且充滿活力的研究領域,提供了提取、分析和理解單一目標及多個目標行為的方法。在過去幾十年中,計算機視覺研究者一直致力於提高自動分析視頻上下文的算法的準確性和穩健性。一般來說,這個領域的研究工作可以分為三個主要主題:1) 計算場景中的人數 2) 在人群中追蹤個體 3) 理解場景中單一目標或多個目標的行為。本書專注於在複雜場景中追蹤個別目標和檢測人群的異常行為。首先,本書調查了在複雜場景中追蹤多個目標的最先進方法,並描述了作者的多目標追蹤方法。所提出的方法是將多目標追蹤問題表述為尋找動態最優解(行人)的優化問題,這些最優解之間經常互動。提出了一種使用多個群體的全新粒子群優化(PSO)算法。通過粒子和群體的多樣化,運動預測被引入到標準PSO中,將群體成員約束到搜索空間中最可能的區域。群體之間的社會互動以及來自行人檢測器的輸出也被納入速度更新方程中。這使得所提出的方法能夠在擁擠場景中追蹤多個目標,並應對嚴重的遮擋和目標之間的強烈互動。

本書的第二部分討論了在擁擠場景中檢測和定位異常活動的問題。我們提出了一種時空拉普拉斯特徵映射方法,用於從視頻中提取不同的人群活動。該方法學習嵌入空間中局部運動的空間和時間變化,並利用不同活動的代表來構建模型,該模型特徵化人群的正常行為。這種正常人群行為的模型允許在局部和全局上下文中檢測異常人群活動,並定位顯示異常行為的區域。

最後一章建議了一些未來研究工作的方向。

目錄:引言 / 文獻回顧 / 使用粒子群優化追蹤多個目標 / 擁擠場景中的異常檢測 / 結論 / 參考文獻 / 作者簡介