Perspectives on Business Intelligence (Paperback)
暫譯: 商業智慧的觀點 (平裝本)

Raymond T. Ng, Patricia C. Arocena, Denilson Barbosa, Giuseppe Carenini, Jr., Luiz Gomes, Stephan Jou, Rock Anthony Leung, Evangelos Milios, Renée J. Miller, John Mylopoulos, Rachel A. Pottinger, Frank Tompa, Eric Yu

相關主題

商品描述

In the 1980s, traditional Business Intelligence (BI) systems focused on the delivery of reports that describe the state of business activities in the past, such as for questions like "How did our sales perform during the last quarter?" A decade later, there was a shift to more interactive content that presented how the business was performing at the present time, answering questions like "How are we doing right now?" Today the focus of BI users are looking into the future. "Given what I did before and how I am currently doing this quarter, how will I do next quarter?" Furthermore, fuelled by the demands of Big Data, BI systems are going through a time of incredible change. Predictive analytics, high volume data, unstructured data, social data, mobile, consumable analytics, and data visualization are all examples of demands and capabilities that have become critical within just the past few years, and are growing at an unprecedented pace. This book introduces research problems and solutions on various aspects central to next-generation BI systems. It begins with a chapter on an industry perspective on how BI has evolved, and discusses how game-changing trends have drastically reshaped the landscape of BI. One of the game changers is the shift toward the consumerization of BI tools. As a result, for BI tools to be successfully used by business users (rather than IT departments), the tools need a business model, rather than a data model. One chapter of the book surveys four different types of business modeling. However, even with the existence of a business model for users to express queries, the data that can meet the needs are still captured within a data model. The next chapter on vivification addresses the problem of closing the gap, which is often significant, between the business and the data models. Moreover, Big Data forces BI systems to integrate and consolidate multiple, and often wildly different, data sources. One chapter gives an overview of several integration architectures for dealing with the challenges that need to be overcome. While the book so far focuses on the usual structured relational data, the remaining chapters turn to unstructured data, an ever-increasing and important component of Big Data. One chapter on information extraction describes methods for dealing with the extraction of relations from free text and the web. Finally, BI users need tools to visualize and interpret new and complex types of information in a way that is compelling, intuitive, but accurate. The last chapter gives an overview of information visualization for decision support and text. Table of Contents: Introduction and the Changing Landscape of Business Intelligence / BI Game Changers: an Industry Viewpoint / Business Modeling for BI / Vivification in BI / Information Integration in BI / Information Extraction for BI / Information Visualization for BI

商品描述(中文翻譯)

在1980年代,傳統的商業智慧(Business Intelligence, BI)系統專注於提供描述過去商業活動狀態的報告,例如回答「我們的銷售在上個季度表現如何?」這類問題。十年後,重心轉向更具互動性的內容,呈現當前商業表現,回答「我們現在的情況如何?」這類問題。如今,BI使用者的焦點已轉向未來。「根據我之前的表現以及我目前在這個季度的表現,我下個季度會怎麼樣?」此外,受到大數據需求的推動,BI系統正經歷著前所未有的變革。預測分析、高容量數據、非結構化數據、社交數據、移動端、可消費的分析和數據可視化都是在過去幾年中變得至關重要的需求和能力,並且以空前的速度增長。本書介紹了與下一代BI系統相關的各種研究問題和解決方案。它以一章關於BI演變的行業觀點開始,並討論了顛覆性趨勢如何徹底改變BI的格局。其中一個顛覆性因素是BI工具的消費化轉變。因此,為了讓商業使用者(而非IT部門)成功使用BI工具,這些工具需要一個商業模型,而不是數據模型。本書的一章調查了四種不同類型的商業建模。然而,即使存在一個商業模型供使用者表達查詢,能夠滿足需求的數據仍然是在數據模型中捕獲的。接下來的章節探討了生動化(vivification)問題,這通常是商業模型與數據模型之間存在的顯著差距。此外,大數據迫使BI系統整合和合併多個且往往截然不同的數據來源。本書的一章概述了幾種整合架構,以應對需要克服的挑戰。雖然本書到目前為止專注於通常的結構化關聯數據,但剩下的章節則轉向非結構化數據,這是大數據中日益重要的組成部分。本書的一章關於信息提取,描述了從自由文本和網絡中提取關係的方法。最後,BI使用者需要工具以引人入勝、直觀但準確的方式可視化和解釋新型和複雜的信息。最後一章概述了用於決策支持和文本的信息可視化。目錄:引言與商業智慧的變遷 / BI顛覆者:行業觀點 / BI的商業建模 / BI中的生動化 / BI中的信息整合 / BI的信息提取 / BI的信息可視化