Distributed Graph Coloring: Fundamentals and Recent Developments (Paperback)
暫譯: 分散式圖著色:基本原理與近期發展 (平裝本)
Leonid Barenboim, Michael Elkin
- 出版商: Morgan & Claypool
- 出版日期: 2013-07-01
- 售價: $1,780
- 貴賓價: 9.5 折 $1,691
- 語言: 英文
- 頁數: 172
- 裝訂: Paperback
- ISBN: 1627050183
- ISBN-13: 9781627050180
-
相關分類:
Computer-networks
海外代購書籍(需單獨結帳)
買這商品的人也買了...
商品描述
The focus of this monograph is on symmetry breaking problems in the message-passing model of distributed computing. In this model a communication network is represented by a n-vertex graph G = (V,E), whose vertices host autonomous processors. The processors communicate over the edges of G in discrete rounds. The goal is to devise algorithms that use as few rounds as possible.
A typical symmetry-breaking problem is the problem of graph coloring. Denote by [delta] the maximum degree of G. While coloring G with [delta]+ 1 colors is trivial in the centralized setting, the problem becomes much more challenging in the distributed one. One can also compromise on the number of colors, if this allows for more efficient algorithms. Other typical symmetry-breaking problems are the problems of computing a maximal independent set (MIS) and a maximal matching (MM). The study of these problems dates back to the very early days of distributed computing. The founding fathers of distributed computing laid firm foundations for the area of distributed symmetry breaking already in the eighties. In particular, they showed that all these problems can be solved in randomized logarithmic time. Also, Linial showed that an O([delta]2)-coloring can be solved very efficiently deterministically.
However, fundamental questions were left open for decades. In particular, it is not known if the MIS or the ([delta] + 1)-coloring can be solved in deterministic polylogarithmic time. Moreover, until recently it was not known if in deterministic polylogarithmic time one can color a graph with significantly fewer than [delta]2 colors. Additionally, it was open (and still open to some extent) if one can have sublogarithmic randomized algorithms for the symmetry breaking problems.
Recently, significant progress was achieved in the study of these questions. More efficient deterministic and randomized ([delta] + 1)-coloring algorithms were achieved. Deterministic [delta]1 + o(1)-coloring algorithms with polylogarithmic running time were devised. Improved (and often sublogarithmic-time) randomized algorithms were devised. Drastically improved lower bounds were given. Wide families of graphs in which these problems are solvable much faster than on general graphs were identified.
The objective of our monograph is to cover most of these developments, and as a result to provide a treatise on theoretical foundations of distributed symmetry breaking in the message-passing model. We hope that our monograph will stimulate further progress in this exciting area.
Table of Contents: Acknowledgments / Introduction / Basics of Graph Theory / Basic Distributed Graph Coloring Algorithns / Lower Bounds / Forest-Decomposition Algorithms and Applications / Defective Coloring / Arbdefective Coloring / Edge-Coloring and Maximal Matching / Network Decompositions / Introduction to Distributed Randomized Algorithms / Conclusion and Open Questions / Bibliography / Authors' Biographies
商品描述(中文翻譯)
本專著的重點是分散式計算中的訊息傳遞模型的對稱破壞問題。在這個模型中,通訊網路由一個 n 頂點的圖 G = (V,E) 表示,其頂點上運行著自主處理器。處理器在 G 的邊上以離散的回合進行通訊。目標是設計出使用最少回合的演算法。
一個典型的對稱破壞問題是圖著色問題。用 [delta] 表示 G 的最大度數。在集中式環境中,使用 [delta] + 1 種顏色來著色 G 是微不足道的,但在分散式環境中,這個問題變得更加具有挑戰性。如果這能夠使演算法更有效率,則可以妥協顏色的數量。其他典型的對稱破壞問題包括計算最大獨立集 (MIS) 和最大匹配 (MM) 的問題。這些問題的研究可以追溯到分散式計算的早期階段。分散式計算的奠基人早在八十年代就為分散式對稱破壞領域奠定了堅實的基礎。特別是,他們展示了所有這些問題都可以在隨機對數時間內解決。此外,Linial 顯示 O([delta]2) 著色可以非常有效地以確定性方式解決。
然而,基本問題在幾十年內仍然懸而未決。特別是,目前尚不清楚 MIS 或 ([delta] + 1) 著色是否可以在確定性多對數時間內解決。此外,直到最近,尚不清楚在確定性多對數時間內是否可以用顏色數量顯著少於 [delta]2 的顏色來著色圖形。此外,是否可以對對稱破壞問題擁有次對數隨機演算法仍然是懸而未決的(在某種程度上仍然是開放的)。
最近,在這些問題的研究中取得了顯著進展。實現了更有效的確定性和隨機 ([delta] + 1) 著色演算法。設計了具有多對數運行時間的確定性 [delta]1 + o(1) 著色演算法。改進了(且通常是次對數時間的)隨機演算法。給出了大幅改進的下界。確定了在這些問題可以比一般圖形更快解決的廣泛圖形類別。
我們專著的目標是涵蓋這些發展的大部分,並因此提供一部關於訊息傳遞模型中分散式對稱破壞的理論基礎的論文。我們希望我們的專著能夠激發這一令人興奮領域的進一步進展。
目錄:致謝 / 引言 / 圖論基礎 / 基本分散式圖著色演算法 / 下界 / 森林分解演算法及其應用 / 缺陷著色 / 樹狀缺陷著色 / 邊著色與最大匹配 / 網路分解 / 分散式隨機演算法簡介 / 結論與開放問題 / 參考文獻 / 作者簡介