Evolutionary Deep Learning: Genetic Algorithms and Neural Networks
暫譯: 進化深度學習:遺傳演算法與神經網絡
Lanham, Micheal
- 出版商: Manning
- 出版日期: 2023-07-06
- 售價: $2,150
- 貴賓價: 9.5 折 $2,043
- 語言: 英文
- 頁數: 360
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1617299529
- ISBN-13: 9781617299520
-
相關分類:
DeepLearning、Algorithms-data-structures
-
相關翻譯:
進化深度學習 (簡中版)
立即出貨 (庫存=1)
相關主題
商品描述
Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning's common pitfalls and deliver adaptable model upgrades without constant manual adjustment.
Summary
In Evolutionary Deep Learning you will learn how to:
- Solve complex design and analysis problems with evolutionary computation
- Tune deep learning hyperparameters with evolutionary computation (EC), genetic algorithms, and particle swarm optimization
- Use unsupervised learning with a deep learning autoencoder to regenerate sample data
- Understand the basics of reinforcement learning and the Q-Learning equation
- Apply Q-Learning to deep learning to produce deep reinforcement learning
- Optimize the loss function and network architecture of unsupervised autoencoders
- Make an evolutionary agent that can play an OpenAI Gym game
Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. In this one-of-a-kind guide, you'll discover tools for optimizing everything from data collection to your network architecture.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Deep learning meets evolutionary biology in this incredible book. Explore how biology-inspired algorithms and intuitions amplify the power of neural networks to solve tricky search, optimization, and control problems. Relevant, practical, and extremely interesting examples demonstrate how ancient lessons from the natural world are shaping the cutting edge of data science.
About the book
Evolutionary Deep Learning introduces evolutionary computation (EC) and gives you a toolbox of techniques you can apply throughout the deep learning pipeline. Discover genetic algorithms and EC approaches to network topology, generative modeling, reinforcement learning, and more! Interactive Colab notebooks give you an opportunity to experiment as you explore.
What's inside
- Solve complex design and analysis problems with evolutionary computation
- Tune deep learning hyperparameters
- Apply Q-Learning to deep learning to produce deep reinforcement learning
- Optimize the loss function and network architecture of unsupervised autoencoders
- Make an evolutionary agent that can play an OpenAI Gym game
About the reader
For data scientists who know Python.
About the author
Micheal Lanham is a proven software and tech innovator with over 20 years of experience.
Table of Contents
PART 1 - GETTING STARTED
1 Introducing evolutionary deep learning
2 Introducing evolutionary computation
3 Introducing genetic algorithms with DEAP
4 More evolutionary computation with DEAP
PART 2 - OPTIMIZING DEEP LEARNING
5 Automating hyperparameter optimization
6 Neuroevolution optimization
7 Evolutionary convolutional neural networks
PART 3 - ADVANCED APPLICATIONS
8 Evolving autoencoders
9 Generative deep learning and evolution
10 NEAT: NeuroEvolution of Augmenting Topologies
11 Evolutionary learning with NEAT
12 Evolutionary machine learning and beyond
商品描述(中文翻譯)
發現前所未見的獨特 AI 策略,這些策略在學術論文之外從未被提及!了解進化計算的原則如何克服深度學習的常見陷阱,並在不需要不斷手動調整的情況下提供可適應的模型升級。
摘要
在《進化深度學習》中,您將學習如何:
- 使用進化計算解決複雜的設計和分析問題
- 使用進化計算(EC)、遺傳演算法和粒子群優化調整深度學習的超參數
- 使用深度學習自編碼器進行無監督學習以再生樣本數據
- 理解強化學習的基本概念及 Q-Learning 方程
- 將 Q-Learning 應用於深度學習以產生深度強化學習
- 優化無監督自編碼器的損失函數和網絡架構
- 創建一個可以玩 OpenAI Gym 遊戲的進化代理
《進化深度學習》是一本基於生物進化原則,幫助您改善深度學習模型的 AutoML 增強指南。這種令人興奮的新方法利用不太知名的 AI 方法來提升性能,而無需花費數小時進行數據標註或模型超參數調整。在這本獨特的指南中,您將發現從數據收集到網絡架構優化的各種工具。
購買印刷版書籍可獲得 Manning Publications 提供的免費 PDF、Kindle 和 ePub 格式電子書。
關於技術
深度學習與進化生物學在這本令人驚嘆的書中相遇。探索生物啟發的演算法和直覺如何增強神經網絡的能力,以解決棘手的搜索、優化和控制問題。相關、實用且極具趣味的範例展示了自然界的古老教訓如何塑造數據科學的前沿。
關於本書
《進化深度學習》介紹了進化計算(EC),並為您提供一套可以在深度學習流程中應用的技術工具箱。發現遺傳演算法和 EC 方法在網絡拓撲、生成建模、強化學習等方面的應用!互動式 Colab 筆記本讓您在探索的同時有機會進行實驗。
內容概覽
- 使用進化計算解決複雜的設計和分析問題
- 調整深度學習的超參數
- 將 Q-Learning 應用於深度學習以產生深度強化學習
- 優化無監督自編碼器的損失函數和網絡架構
- 創建一個可以玩 OpenAI Gym 遊戲的進化代理
關於讀者
適合熟悉 Python 的數據科學家。
關於作者
**Micheal Lanham** 是一位經驗豐富的軟體和技術創新者,擁有超過 20 年的經驗。
目錄
第一部分 - 開始
1 介紹進化深度學習
2 介紹進化計算
3 介紹使用 DEAP 的遺傳演算法
4 使用 DEAP 的更多進化計算
第二部分 - 優化深度學習
5 自動化超參數優化
6 神經進化優化
7 進化卷積神經網絡
第三部分 - 進階應用
8 進化自編碼器
9 生成深度學習與進化
10 NEAT:增強拓撲的神經進化
11 使用 NEAT 的進化學習
12 進化機器學習及其未來
作者簡介
Micheal Lanham is a proven software and tech innovator with over 20 years of experience. He has developed a broad range of software applications in areas such as games, graphics, web, desktop, engineering, artificial intelligence, GIS, and machine learning applications for a variety of industries. At the turn of the millennium, Micheal began working with neural networks and evolutionary algorithms in game development.
作者簡介(中文翻譯)
米高·蘭哈姆 是一位經驗豐富的軟體和科技創新者,擁有超過 20 年的經驗。他在遊戲、圖形、網頁、桌面、工程、人工智慧、地理資訊系統 (GIS) 和機器學習應用等多個領域開發了廣泛的軟體應用,服務於各種產業。在千禧年之際,米高開始在遊戲開發中使用神經網路和進化演算法。