Grammatical Inference for Computational Lingustics (Synthesis Lectures on Human Language Technologies)
暫譯: 計算語言學的語法推斷(人類語言技術綜合講座)
Jeffrey Heinz, Colin de la Higuera, Menno van Zaanen
- 出版商: Morgan & Claypool
- 出版日期: 2015-10-01
- 售價: $1,780
- 貴賓價: 9.5 折 $1,691
- 語言: 英文
- 頁數: 162
- 裝訂: Paperback
- ISBN: 1608459772
- ISBN-13: 9781608459773
海外代購書籍(需單獨結帳)
商品描述
This book provides a thorough introduction to the subfield of theoretical computer science known as grammatical inference from a computational linguistic perspective. Grammatical inference provides principled methods for developing computationally sound algorithms that learn structure from strings of symbols. The relationship to computational linguistics is natural because many research problems in computational linguistics are learning problems on words, phrases, and sentences: What algorithm can take as input some finite amount of data (for instance a corpus, annotated or otherwise) and output a system that behaves "correctly" on specific tasks? Throughout the text, the key concepts of grammatical inference are interleaved with illustrative examples drawn from problems in computational linguistics. Special attention is paid to the notion of "learning bias." In the context of computational linguistics, such bias can be thought to reflect common (ideally universal) properties of natural languages. This bias can be incorporated either by identifying a learnable class of languages which contains the language to be learned or by using particular strategies for optimizing parameter values. Examples are drawn largely from two linguistic domains (phonology and syntax) which span major regions of the Chomsky Hierarchy (from regular to context-sensitive classes). The conclusion summarizes the major lessons and open questions that grammatical inference brings to computational linguistics.
商品描述(中文翻譯)
本書從計算語言學的角度,對理論計算機科學的一個子領域——文法推斷,提供了全面的介紹。文法推斷提供了原則性的方法,用於開發計算上可靠的算法,這些算法能夠從符號串中學習結構。與計算語言學的關係是自然的,因為計算語言學中的許多研究問題都是關於單詞、短語和句子的學習問題:什麼算法可以將有限的數據(例如一個語料庫,無論是帶註釋的還是未註釋的)作為輸入,並輸出在特定任務上表現“正確”的系統?在整個文本中,文法推斷的關鍵概念與來自計算語言學問題的示例交錯呈現。特別注意“學習偏見”的概念。在計算語言學的背景下,這種偏見可以被認為反映了自然語言的共同(理想上是普遍的)特性。這種偏見可以通過識別一個可學習的語言類別來納入,該類別包含要學習的語言,或者通過使用特定的策略來優化參數值。示例主要來自兩個語言領域(音韻學和句法學),這些領域涵蓋了喬姆斯基層級的主要區域(從正則類到上下文相關類)。結論總結了文法推斷對計算語言學帶來的主要教訓和未解決的問題。