Foundations of Data Quality Management (Paperback)
暫譯: 數據品質管理基礎 (平裝本)
Wenfei Fan, Floris Geerts
- 出版商: Morgan & Claypool
- 出版日期: 2012-08-01
- 售價: $1,900
- 貴賓價: 9.5 折 $1,805
- 語言: 英文
- 頁數: 218
- 裝訂: Paperback
- ISBN: 160845777X
- ISBN-13: 9781608457779
-
相關分類:
大數據 Big-data、Data Science
立即出貨 (庫存=1)
相關主題
商品描述
Data quality is one of the most important problems in data management. A database system typically aims to support the creation, maintenance, and use of large amount of data, focusing on the quantity of data. However, real-life data are often dirty: inconsistent, duplicated, inaccurate, incomplete, or stale. Dirty data in a database routinely generate misleading or biased analytical results and decisions, and lead to loss of revenues, credibility and customers. With this comes the need for data quality management. In contrast to traditional data management tasks, data quality management enables the detection and correction of errors in the data, syntactic or semantic, in order to improve the quality of the data and hence, add value to business processes. While data quality has been a longstanding problem for decades, the prevalent use of the Web has increased the risks, on an unprecedented scale, of creating and propagating dirty data. This monograph gives an overview of fundamental issues underlying central aspects of data quality, namely, data consistency, data deduplication, data accuracy, data currency, and information completeness. We promote a uniform logical framework for dealing with these issues, based on data quality rules.
The text is organized into seven chapters, focusing on relational data. Chapter One introduces data quality issues. A conditional dependency theory is developed in Chapter Two, for capturing data inconsistencies. It is followed by practical techniques in Chapter 2b for discovering conditional dependencies, and for detecting inconsistencies and repairing data based on conditional dependencies. Matching dependencies are introduced in Chapter Three, as matching rules for data deduplication. A theory of relative information completeness is studied in Chapter Four, revising the classical Closed World Assumption and the Open World Assumption, to characterize incomplete information in the real world. A data currency model is presented in Chapter Five, to identify the current values of entities in a database and to answer queries with the current values, in the absence of reliable timestamps. Finally, interactions between these data quality issues are explored in Chapter Six. Important theoretical results and practical algorithms are covered, but formal proofs are omitted. The bibliographical notes contain pointers to papers in which the results were presented and proven, as well as references to materials for further reading.
This text is intended for a seminar course at the graduate level. It is also to serve as a useful resource for researchers and practitioners who are interested in the study of data quality. The fundamental research on data quality draws on several areas, including mathematical logic, computational complexity and database theory. It has raised as many questions as it has answered, and is a rich source of questions and vitality.
Table of Contents: Data Quality: An Overview / Conditional Dependencies / Cleaning Data with Conditional Dependencies / Data Deduplication / Information Completeness / Data Currency / Interactions between Data Quality Issues
商品描述(中文翻譯)
資料品質是資料管理中最重要的問題之一。資料庫系統通常旨在支持大量資料的創建、維護和使用,重點在於資料的數量。然而,現實生活中的資料往往是「髒的」:不一致、重複、不準確、不完整或過時。資料庫中的髒資料經常會產生誤導性或偏見的分析結果和決策,並導致收入、信譽和客戶的損失。因此,資料品質管理的需求應運而生。與傳統的資料管理任務相比,資料品質管理使得能夠檢測和修正資料中的錯誤,無論是語法上的還是語義上的,以改善資料的品質,從而為商業流程增值。儘管資料品質已經是一個長期存在的問題,但網路的普遍使用在前所未有的規模上增加了創建和傳播髒資料的風險。本專著概述了資料品質的核心方面所涉及的基本問題,即資料一致性、資料去重、資料準確性、資料時效性和資訊完整性。我們推廣了一個統一的邏輯框架來處理這些問題,基於資料品質規則。
本書分為七個章節,重點在於關聯資料。第一章介紹資料品質問題。第二章發展了一個條件依賴理論,用於捕捉資料不一致性。接下來的第二章b提供了發現條件依賴的實用技術,以及基於條件依賴檢測不一致性和修復資料的方法。第三章介紹了匹配依賴,作為資料去重的匹配規則。第四章研究了相對資訊完整性的理論,修訂了經典的封閉世界假設和開放世界假設,以描述現實世界中的不完整資訊。第五章提出了一個資料時效性模型,以識別資料庫中實體的當前值,並在缺乏可靠時間戳的情況下回答查詢。最後,第六章探討了這些資料品質問題之間的相互作用。重要的理論結果和實用算法被涵蓋,但正式的證明被省略。參考文獻包含了結果被呈現和證明的論文指引,以及進一步閱讀的材料參考。
本書旨在用於研究生層級的研討會課程。它也將作為對資料品質研究感興趣的研究人員和實務工作者的有用資源。資料品質的基本研究涉及數個領域,包括數學邏輯、計算複雜性和資料庫理論。它提出了許多問題,並且是一個充滿問題和活力的豐富來源。
目錄:資料品質概述 / 條件依賴 / 使用條件依賴清理資料 / 資料去重 / 資訊完整性 / 資料時效性 / 資料品質問題之間的相互作用