Graph Mining: Laws, Tools, and Case Studies (Paperback)
暫譯: 圖形挖掘:法則、工具與案例研究 (平裝本)

Deepayan Chakrabarti, Christos Faloutsos

  • 出版商: Morgan & Claypool
  • 出版日期: 2012-10-01
  • 售價: $1,780
  • 貴賓價: 9.5$1,691
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Paperback
  • ISBN: 1608451151
  • ISBN-13: 9781608451159
  • 相關分類: Amazon Web Services
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others.

In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints.

Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions

商品描述(中文翻譯)

網路的樣貌是什麼?我們如何在社交網路中找到模式、社群和異常值?在一個網路中,哪些節點是最中心的? 這些是驅動本研究的問題。網路和圖形出現在許多不同的場景中,例如社交網路、計算機通信網路(入侵檢測、流量管理)、生物學中的蛋白質-蛋白質互動網路、文本檢索中的文檔-文本二分圖、金融詐騙檢測中的人-帳戶圖等。

在本研究中,我們首先列出幾個真實圖形傾向遵循的驚人模式。然後,我們提供一個詳細的生成器列表,這些生成器試圖模擬這些模式。生成器很重要,因為它們可以幫助進行「如果」情境、外推和匿名化。接著,我們提供一個強大的圖形分析工具列表,特別是光譜方法(奇異值分解 (SVD))、張量,以及案例研究,如著名的「pageRank」算法和「HITS」算法,用於排名網頁搜索結果。最後,我們以對社會學等相關領域的工具和觀察的調查作結,這些提供了互補的觀點。

目錄:介紹 / 靜態圖中的模式 / 演變圖中的模式 / 加權圖中的模式 / 討論:特定圖的結構 / 討論:冪律和偏差 / 模式摘要 / 圖形生成器 / 偏好連接及其變體 / 融入地理信息 / RMat / 通過克羅內克乘法生成圖形 / 摘要與實務指南 / SVD、隨機漫步和張量 / 張量 / 社群檢測 / 影響/病毒傳播與免疫 / 案例研究 / 社交網路 / 其他相關工作 / 結論